Chapter 6

The ageing eyewitness

Amina Memon, Fiona Gabbert and Lorraine Hope, University of Aberdeen

Acknowledgements

The research reported in this chapter was supported by grants from the National Science Foundation and the Economic and Social Research Council. We would like to thank our research collaborators James Bartlett, Ray Bull, Lynn Hulse, Rachel Rose and Jean Searcy for their contribution to this work.

Eyewitness evidence plays a key role in the administration of justice and identification errors can lead to miscarriages of justice (Huff 1987; Rattner 1988; Scheck, Neufeld and Dwyer 2000). To address these concerns, researchers have attempted to identify the conditions under which eyewitnesses may be mistaken (for a review see Memon, Vrij and Bull 2003; Memon and Wright 2000). In some jurisdictions, safeguards are in place to reduce the likelihood of error (see Davies and Valentine 2000; Wells et al. 1998). However, the bulk of the literature on eyewitnesses is based on studies of young adults (typically college students) and children. There has been a lack of research on individuals over the age of 60 years. This raises concerns about the generalisability of earlier eyewitness findings. The ageing population profile of developed countries and the fact that senior citizens are more active now than ever before led to our interest in the older witness.

Where straightforward comparisons have been made between different age groups, young adults have been found to be significantly superior to older adults in many eyewitness skills, for example, in accuracy of recall for perpetrator characteristics, environmental details,
The ageing eyewitness

and for details of actions and events (see Yarmey 2001, for an overview of literature regarding older eyewitnesses). This applies to both free recall (where the witness provides a narrative account from their own perspective) and to cued recall (where the witness responds to interviewer questions, see Yarmey and Kent 1980; Yarmey, Jones and Rashid 1984). Yarmey averaged the results across three studies (Yarmey 1982; Yarmey and Kent 1980; Yarmey et al. 1984) to explore age differences further and found that young adults (mean age of 21 years) were 20 per cent more accurate in free recall, 13 per cent more accurate in cued recall, and 15 per cent more complete in their descriptions of suspect than older adults (mean age of 70 years). Other studies have shown that older adult witnesses provide fewer descriptions of the perpetrator (physical and clothing characteristics) than younger witnesses (Brimacombe, Quinton, Nance and Garrioch 1997).

The age of a witness can also relate to memory performance in recognition situations. For example, the typical finding in laboratory studies of unfamiliar face recognition (the recognition of faces seen only once before) is that older adults (60–80 years) are more likely to ‘false alarm’ to new faces. In other words they are more likely to falsely ‘recognise’ a face they had not seen previously (Searcy, Bartlett and Memon 1999). In the eyewitness identification setting, older adults are also more prone to making false choices. This chapter will examine some of the difficulties facing the older eyewitness and review studies of young and older adults conducted in our laboratory. The nature of the age related memory errors, the underlying mechanisms and practical implications of the findings will be also be discussed.

Eyewitness errors in the recall of event details

One of the most common sources of eyewitness error is when witnesses’ memories become contaminated by information they have acquired since they witnessed the event (Wright and Loftus 1998). When this post-event information is misleading or errant, it is referred to as *mis-information*. In studies of the misinformation effect, participants are exposed to an event (e.g. a simulated crime), then later misinformed about some aspect of it (e.g. an erroneous newspaper report about the crime). The typical finding is that participants exposed to misinformation will often incorporate misleading details into their memory reports (e.g. Wright and Loftus 1998).

Research in the field of cognitive ageing suggests that older adults *should* be more prone to misinformation effects. For example, research
indicates that older adults often have deficits in source monitoring (Johnson, Hashtroudi and Lindsay 1993; Schacter, Kihlstrom, Kaszniak and Valdiserri 1993). In other words, older adults may experience difficulty in distinguishing what they have witnessed themselves as opposed to what they may have heard from someone else (i.e., a problem identifying the precise source of the information). Source confusion has been shown to play a major role in susceptibility to post-event misinformation (Mitchell, Johnson and Mather, in press; Zaragoza, Lane, Ackil and Chambers 1997), and older adults are particularly prone to making this kind of error (Schacter et al. 1993). A typical consequence of source confusion is that the suggested information is erroneously reported as if it was part of the original memory (Johnson et al. 1993; Karpel, Hoyer and Toglia 2001; Mitchell et al. 2003; Wegesin, Jacobs, Zubin, Ventura and Stern 2000; Zaragoza et al. 1997).

Mitchell et al. (2003) explored age differences in source monitoring performance using a standard misinformation paradigm and found that older adults were more likely than young adults to say that they saw information that was actually only suggested to them. They were also more confident in their source misattributions than were younger adults. Similarly, Karpel et al. (2001) found that older adults were more likely to report items falsely that had only been suggested. Again, it was found that older adults were more confident about the falsely recognised items. Cohen and Faulkner (1989) and Loftus, Levidow and Duensing (1992) have also demonstrated that older adults are more likely to retrieve misinformation than younger adults.

Gabbert, Memon and Allan (2003) employed a novel procedure to examine the effects of misinformation. In their study, younger (18–30 years) and older (60–80 years) adults were led to believe that they were seeing the same video of a crime scene. Although the two video clips contained exactly the same sequence of events, they were filmed from different angles to simulate different witness perspectives. Critically, this manipulation allowed different features of the event to be observed for each participant. After viewing the event, participants were asked to recall the event either alone or in (same-age) pairs. Thus, each person had an opportunity to (unintentionally) introduce items of misinformation into the discussion. In other words, details of the event visible only from their perspective and details that were not seen by the other witnesses. An individual recall test was then administered to examine the effects of the discussion on subsequent memory reports. A significant proportion (71 per cent) of witnesses who had discussed the event reported details acquired during the discussion (i.e. details they simply could not have seen given their witness perspective). Age
differences emerged in the amount of correct items of information reported about the event (means = 18.00 and 15.95 for the young and older age-groups respectively). However, no age-related differences in susceptibility to the items of misinformation were demonstrated.

This finding contrasts with the conclusions of studies reviewed earlier that found an age-related increase in susceptibility to misinformation. Perhaps this is because the act of being able to discuss memories provides older adults with additional memory cues about event details, as well as focusing their attention to the event (see Gabbert et al. 2003).

Two further studies have also demonstrated that older adults are not more susceptible to misinformation than their younger counterparts. In a study comparing the performance of young adult witnesses with that of children and older adults, Coxon and Valentine (1997) found no significant differences in the suggestibility of young and older adults. Similarly, Searcy, Bartlett and Memon (2000) asked younger and older adults to view a videotape of a simulated crime, then presented them with misinformation about the criminal’s physical features in the form of post-event narratives. In line with Coxon and Valentine (1997), they found the younger group were equally susceptible to the misleading physical cues as the older group. It is possible that differences between experimental procedures may explain the inconsistent results regarding age differences in susceptibility to misinformation (e.g. in samples of participants or task demands). At present, research examining age differences in recall within the eyewitness literature is sparse. Therefore, although a growing number of studies suggest an age-related increase in susceptibility to misinformation, no firm conclusions can be drawn.

Eyewitness recognition errors

One of the earliest studies to examine the effects of ageing on eyewitness recognition performance was that of Yarmey et al. (1984). They exposed younger and older participants to a simulated crime to investigate age differences in ability to identify accurately a suspect among a line-up of photographs. It was noted that there were no age differences in the correct identification of a suspect from suspect-present line-ups. However, if a suspect was absent from a line-up, older witnesses made more false identifications. This finding is reminiscent of the typical finding in laboratory studies of face recognition. For example, Bartlett, Strater and Fulton (1991) reported that while young and older adults did not differ in the rates of correct recognition of previously seen unfamiliar faces, they made more false alarms to faces that had not seen before.
More recently, Searcy et al. (1999) compared the performance of young (18–30 years) and older adults (60–80 years). Participants were shown a crime video followed by a photo-line-up. Older participants made more erroneous foil choices regardless of whether the target was present or absent. In a second line-up task, participants were asked to identify a person who appeared in a brief video interview shown prior to the crime tape. Again, the older participants made more false choices across target present and absent line-ups. The age related increase in false identifications was replicated in subsequent studies (Memon and Bartlett 2002; Memon and Gabbert 2003; Searcy et al. 2000; Searcy, Bartlett, Memon and Swanson 2001). Follow-up studies set about trying to understand the conditions under which age differences in eyewitness performance are attenuated and the factors responsible.

Four studies of ageing and eyewitness identification were recently completed in our laboratory at Aberdeen University. There were a number of similarities between the studies. For example, all but the final study involved showing unsuspecting witnesses a videotaped crime event followed by a six item photo-line-up. Delay between exposure to the event and identification varied from approximately 40 minutes to 48 hours. Participants in all studies received unbiased line-up instructions informing them that the target witnessed in the video may or may not be present in the line-up. Younger participants (17–30 years) were recruited from the undergraduate population at the University of Aberdeen. Older participants (60–81 years) were healthy, active members of the local community.

Study 1: exposure to mug-shots and accuracy of a subsequent identification

One factor that may be responsible for the age related increase in false alarms to faces that have not been seen before is that older adults rely on ‘familiarity’ as opposed to ‘recollection’ of the context in which the face was previously seen as a basis for responding (Bartlett et al. 1991; Searcy et al. 1999). As indicated earlier, accurate recollection of source information is critical in an eyewitness setting, especially when witnesses are exposed to a number of faces during the course of a police investigation. A person who has previously engaged in a similar criminal activity in the locality may appear in a police mug-book as well as a formal identification parade. Consider the case of Gary Graham who was convicted of murder in Texas in 1999. The Graham case relied primarily on eyewitness evidence but only one of eight witnesses
The ageing eyewitness

actually made a positive identification from a line-up. This identification occurred one day after the witness had seen the same suspect’s face in a photo array. We cannot say whether or not the witness in the Graham case was accurate, but research has shown that exposure to a suspect’s face prior to a formal identification (e.g. a facial composite shown in the media, a face seen in a mug-shot album or in an earlier line-up) can affect the likelihood of an accurate identification. Gary Graham was executed in June 2000.

The results of several studies suggest that when witnesses view a line-up after they have examined mug-shots, they can be inclined, mistakenly, to identify a person whose mug-shot photograph they have previously seen (Brigham and Cairns 1988; Gorenstein and Ellsworth 1980). We refer to this phenomenon below as the ‘mug-shot exposure effect’. There are two primary explanations for this effect. One explanation is that it is a source monitoring error of the kind described earlier – a face appears familiar because of a prior encounter. Another possibility is that once a witness reaches an identification decision and expresses it, he or she feels committed to that identification and may be less willing to change the decision later. The ‘commitment’ effect has recently been proposed to be one of the most important factors responsible for the mug-shot exposure effect (Dysart, Lindsay, Hammond and Dupuis 2001).

Our first study (Memon, Hope, Bartlett and Bull 2003) set out to see if older adults were more susceptible to mug-shot exposure effect. One hundred and sixty-nine young (mean = 22 years) and older (mean = 69 years) witnesses viewed a video of a crime. Participants were allocated to one of two conditions. One group were asked to look through a mug-shot album and asked if the thief (target) from the crime video was among the photographs. The mug-shot album consisted of 12 black and white 4” × 3” photographs of white males of a similar age to the main target depicted in the video event. Our mug-shot album modelled the ‘witness book’ format used in Scotland where instead of asking the witness to search through a large database of faces, the police frequently select fewer faces of suspects who have previously committed crimes that fit the category under investigation. The target’s face did not appear in the mug-shot album. In the other condition, witnesses did not see the mug-shot album but engaged in a filler task. After a 48-hour delay all witnesses took part in a target absent photo identification parade comprised of large (10” × 8”) coloured photographs presented in a 3 × 2 array. The line-up was comprised of six faces adopting the conventions of line-up procedures in Scotland where an identification parade generally consists of a suspect and between five and eight foils. Again,
the target was absent but one of the faces from the mug-shot albums (an innocent face) appeared in the photo-line-up. We refer to this face as the critical foil.

Memon et al. (2003) report two main findings. Older adults showed a significantly greater tendency to make choices from the mug-shot album than young participants (71 per cent and 42 per cent respectively). Similarly, older adults were also more likely to make choices from the photo-line-up than younger participants (62 per cent and 33 per cent respectively). Given that these were choices of innocent foils, these are false identifications. But what about choices of our critical (innocent) foil face that appeared in both mug-shots and line-up? The results here were more complex. Witnesses who made any selection from the mug-shot album (whether it was a critical foil or a different foil) were more likely to make a false choice of the critical foil in the photo-line-up than those witnesses who made no mug-shot choice. Thus, the tendency to pick any face from the mug-shot (mug-shot choosing) seemed to be the most important factor in predicting critical foil choices. Participants’ prior commitment to choosing the critical foil was not a necessary prerequisite for the mug-shot effect. This effect is interesting because it is somewhat counterintuitive. One might have predicted that a witness who is presented with a line-up in which the face he or she saw earlier is absent will not pick anyone from the line-up. Yet Memon et al. (2003) found that mug-shot choosers are highly likely to make line-up choices whether or not the previously chosen face was present.

The increase in choices of the critical (innocent) foil following prior exposure supports the hypothesis that source monitoring errors may in part be responsible for the tendency to choose that foil erroneously. The participants see the critical foil in the photo-line-up and he appears familiar. They misattribute this familiarity to the crime video. One problem with this account is that it would not have predicted that critical foil choices would depend on mug-shot choosing. Moreover, the literature on ageing and source memory problems (e.g. Brown, Jones and Davis 1995) would have led us to expect that that older adults would be more susceptible to choosing the critical foil but there were no age by condition interactions. However, we know that in healthy community samples of older adults, source memory deficits are not always observed (Glisky, Rubin and Davidson 2001), a point illustrated by our discussion of the next study reported in this chapter.

A more plausible explanation of the Memon et al. (in press, a) data is that the older adults were relying more on a familiarity strategy in making their choices from the mug-shot album task and photo-line-up.
task. This is consistent with the high rates of false choosing of all foil faces in both tasks (see Memon et al. 2003 for further details and alternative hypotheses). Thus, the conclusion so far is that older adults are more prone to choosing than younger adults. In the next study, we look more closely at our older age groups.

Study 2: identification abilities of young-old and old-old witnesses

In this study 32 young (m = 19.6 years) and 31 older participants (m = 69 years) were tested. All witnesses viewed a video of a man walking through a park engaging in relatively innocuous activities including a conversation with a young woman. One week later, all participants viewed a target absent line-up for the central male character around whom the film was based. The overall accuracy rate (correct rejections from the target-absent line-up) was 61 per cent. There was not a statistically significant difference in the accuracy rates of young and older adults (66 per cent and 55 per cent respectively). A median split was performed on the older group dividing the older participants into a younger-old and older-old group. Those of 69 years and above were placed in an Old-Old group (n = 16) while those aged 68 and under constituted the Young-Old group (n = 15). There were significant age differences in line-up performance between these two older age groups. Seventy-five per cent of the Old-Old group made false choices from the target-absent line-up, compared to only 13 per cent of the Young-Old group. This suggests that perhaps older adults (ages 69 and over) may be particularly vulnerable to the age related false choosing effect. It is possible that by placing all our older adults in one large group we have been masking individual differences (see also LaRue 1992). Indeed, in their recent research, Glisky et al. (2001) make the same point. They suggest that:

> it may be the case that many older adults do not experience significant memory declines with age. Failure to take account of these individual differences may mask findings that are important for understanding the deficits that do occur and the reasons for them. The important differences may not be between young and old adults but may be between different subgroups of older adults who are ageing differently. (p. 1146)
Study 3: duration of exposure and eyewitness recognition

One factor that may underlie age differences in memory is a deficiency in the quality of encoding of event details, resulting in poor memory representations that are difficult to retrieve (see Balota, Dolan and Duchek 2000, for a review). It has been suggested that reduced processing resources (e.g. a reduction in attentional capacity) can impair the ability of older adults to encode the elaborative information (Craik 1986; Naveh-Benjamin and Craik 1996). For example, specific contextual details about items that can facilitate later retrieval. As argued earlier, in an eyewitness setting, it is critical to retrieve an accurate representation of what was seen earlier to avoid source confusion errors.

In order to explore the impact of age differences in encoding on memory, the next study examined the relationship between duration of exposure to a face in an eyewitness setting, and identification accuracy and confidence in young and older adults (Memon, Hope and Bull 2003). Prior literature suggests that increases in the amount of time available for processing enhances face recognition (e.g. Winograd 1981). In line with this, Shapiro and Penrod (1986), in a meta-analysis of face recognition studies, reported a positive relationship between the amount of time spent viewing a face and accurate identification rates. However, false alarm rates also increased with longer viewing times. Only a handful of eyewitness studies have systematically examined the effects of exposure duration on face memory, despite its forensic importance. Memon et al. (2003) were particularly interested in the counterintuitive finding that extended exposure increases false alarms. There is some evidence to suggest that under conditions of ‘longer’ exposure, participants make use of meta-memorial information such as the ‘availability’ or ‘ease’ with which information can be brought to mind (Read 1995) and this can sometimes lead to false alarms. Read (1995) found that participants who interacted with store clerks for a longer duration (four to 15 minutes as compared to 30 to 60 seconds) made more correct choices when presented with a line-up in which the target was present (a target-present line-up) but more false choices when a target was absent. Recall that older adults are more likely to rely on ‘familiarity’ and ‘availability’ in making decisions (Searcy, Bartlett and Memon 2000). Memon et al. (2003) therefore predicted an increase in false alarms in the extended exposure condition.

One hundred and sixty four young (ages 17–25) and older (ages 59–81) adults viewed a simulated crime in which they saw the culprit’s face for a short (12 second) or longer (45 second) duration. They were then tested with a line-up in which the culprit or target was absent (TA) or a
The ageing eyewitness line-up containing the target (TP) line-up. The longer exposure significantly boosted accuracy rates for both young and older participants particularly for target present line-ups but it also increased the correct rejection rate in target absent line-ups. These findings reinforce the common-sense view (and that expressed by the USA’s Supreme Court in the case of Neil v. Biggers 1972) that extended exposure should aid subsequent recognition accuracy. In the short exposure condition, self reports of confidence in the decision made differed depending on whether the witness was accurate or not, with inaccurate witnesses expressing lower confidence. However, longer exposure to the target inflated the confidence ratings of younger and older adults. In the target present condition, witnesses were confident in the long exposure condition, even when they were wrong. Clearly, jurors and police officers should be aware of this undesirable effect of extended exposure to a culprit on witnesses’ subjective confidence in their identification decisions.

With respect to recall of event details, there were age differences in the short exposure condition with the older adults recalling significantly fewer correct details. There were no age differences in the amount of recall errors and no age effects in the long exposure condition. The age differences in the short exposure condition fit with Craik’s (1986) hypothesis that older adults may fail to encode in elaboration of details involving effort when attentional capacity is limited. However, when environmental support is provided, or conditions facilitate elaborative encoding, age differences are minimised (Craik, Byrd and Swanson 1987).

Study 4: context reinstatement and eyewitness identification

Research has shown that reinstating the context in which an event was experienced improves identification accuracy (See Malpass 1996 for a review of the effects of context reinstatement techniques). Context reinstatement may occur physically (returning to the scene of crime when performing the identification task) or, if that is not appropriate, mentally (imagining the scene of crime before performing the identification task). Context reinstatement is one of the principle components of the cognitive interview (Fisher and Geiselman 1992), a technique that can significantly increase the quantity and quality of information that can be obtained from a witness (Koehnken, Milne, Memon and Bull 1999).

A number of studies have reported that the reinstatement of original
contextual cues can reduce false choosing in eyewitness tasks (Cutler, Penrod and Martens 1997; Gwyer and Clifford 1997; Kraffka and Penrod 1985; Malpass and Devine 1981; Smith and Vela 1992) although several other studies report null effects (Fisher, Quigley, Brock, Chin and Cutler 1990; Searcy, Bartlett, Memon and Swanson 2001). Searcy et al. (2001) included a younger and older age group in their study of the effects of an extended delay (one month) and cognitive interview on eyewitness identification accuracy. The cognitive interview had no apparent effects on the performance of young or older witnesses.

The study conducted in our laboratory employed a 2 (cognitive interview versus structured interview) × 2 (misinformation versus no misinformation) between subjects design. Sixty older adults (mean = 68 years) were randomly assigned to receive either the cognitive or structured interview and, within each interview type, received misinformation or no misinformation before the interview, resulting in four experimental groups. Witnesses met a confederate, in the course of an interaction during which they engaged in a brief conversation with the confederate. An hour later, they were asked if they could identify her from a target-absent line-up. Eighty-seven per cent of our senior citizens falsely identified a face from the line-up. The cognitive interview had no effect whatsoever on identification accuracy. Five people correctly rejected the lineup under cognitive interview conditions (eight per cent) while only three people correctly rejected the line-up under SI conditions (five per cent). Those participants interviewed with a cognitive interview produced significantly more correct details about the objects that the confederate was carrying than a structured interview. Contrary to prior studies (e.g. Memon, Wark, Holley, Bull and Koehnken 1996) there were no significant differences in number of misleading details recalled under the cognitive and structured interviews.

In line with prior studies (Fisher et al. 1990), the cognitive interview does not aid face recognition (see also Brown 2003). Of most concern is that we obtained an alarmingly high false identification rate with an extended exposure to a face during the course of a live interaction (compare with Study 3, in this chapter). The vast majority of our older witnesses made a false identification from a target absent line-up even though they had the option to say the person they had encountered earlier was not in the line-up.

In the final section of this chapter, we describe a post-line-up questionnaire that provides some additional data on the attributions and thought processes that may underlie decisions in eyewitness tasks.
Post-line-up questionnaire

Researchers have tended to overlook the fact that witnesses are individuals with their own belief systems. Their decisions may be influenced by prior experiences and attitudes. These factors may have an impact upon decisions independently of any techniques designed to improve accuracy.

A post-line-up questionnaire was developed to examine participants’ post-identification cognitions regarding the line-up identification task. Our young and older adults were asked to provide a response to four questions relating to their beliefs about the line-up task. The questionnaire was administered immediately after the line-up task in all studies and we asked people to work through the questionnaire at their own pace. No feedback on the accuracy of their line-up decision was supplied until the final debriefing at the end of the study. Two questions were of particular interest: question one sought to determine whether witnesses expect that the guilty party will always be present and thereby assume their job is to identify him or her (rather than first of all discern whether the actual perpetrator is in fact present). A further question asked witnesses whether they thought they would have made the same identification decision in real life. Results across four studies (N = 636) indicated that 90 per cent of younger and older witnesses assumed the perpetrator was present in the line-up. This came as a surprise as all witnesses were provided with cautionary instructions which stated that the perpetrator may or may not be present in the line-up. When asked, 95 per cent of our younger participants and 93 per cent of our older participants recalled the instruction that the perpetrator may not be present. Only 17 per cent said they felt under pressure to choose from the line-up and 78 per cent indicated that they would be happy to make the same decision in real life. The overall accuracy rate was only 48% (i.e. only 48 per cent of participants made the correct identification decision).

A significant proportion of witnesses indicated that they would make the same decision in real life even though they were actually inaccurate in their identification decision. Forty-seven per cent of those who said they would make the same decision in real life were incorrect in their line-up decision (N = 220).

Our results clearly indicate that participants in all our studies approach the line-up task with a strong and consistent expectation about the identification, namely that the target (perpetrator) will be present in the line-up. This expectation is there despite the use of cautionary line-
up instructions. Some of our witnesses commented that they hold the same beliefs and expectations regarding real life line-up identification parades.

Conclusion

In this chapter we have attempted to provide an overview of the ageing eyewitness. We began by looking at age differences in susceptibility to misinformation. Prior work was inconclusive on this issue. The overall conclusion we have drawn from our work is that there is no clear evidence to suggest an age-related vulnerability to misinformation. In terms of accuracy of recall, older adults tend to recall fewer correct details than younger adults particularly when they have only had a brief exposure to an eyewitness event. Studies of eyewitness recognition errors have shown that older adults are consistently more prone to making false identifications from line-ups. The results of Study 4 suggest that even when older witnesses have had extended interactions with strangers, they are still likely to identify falsely someone from a target absent line-up. What is also worrying, is that the majority of witnesses told us that they expected the target to be present in the line-up and would make the same decision were it a real life situation.

More research is warranted to examine the generalisability of the findings reported here and to examine further individual differences between older age samples (cf. Study 2, this chapter). Finally, the research presented in this chapter may raise concerns regarding whether or not eyewitness evidence obtained from older witnesses is given the same weight by investigating officers and jurors as the testimony of younger adults. To date, there is only one published study (Brimacombe et al. 1997) that has systematically examined the perceptions of young and older eyewitnesses in a simulated jury setting. The participants in that study (college students) did not display negative stereotypes of older adult eyewitnesses. However, further research using a more representative sample of ‘jurors’ will shed more light on this issue.

References

The ageing eyewitness

The ageing eyewitness

Chichester: John Wiley and Sons.

