7

Inferences About the Difference Between Two Means

Chapter Outline

7.1 New Concepts
 7.1.1 Independent Versus Dependent Samples
 7.1.2 Hypotheses
7.2 Inferences About Two Independent Means
 7.2.1 Independent t Test
 7.2.2 Welch t' Test
 7.2.3 Recommendations
7.3 Inferences About Two Dependent Means
 7.3.1 Dependent t Test
 7.3.2 Recommendations
7.4 SPSS
7.5 G*Power
7.6 Template and APA-Style Write-Up

Key Concepts

1. Independent versus dependent samples
2. Sampling distribution of the difference between two means
3. Standard error of the difference between two means
4. Parametric versus nonparametric tests

In Chapter 6, we introduced hypothesis testing and ultimately considered our first inferential statistic, the one-sample t test. There we examined the following general topics: types of hypotheses, types of decision errors, level of significance, steps in the decision-making process, inferences about a single mean when the population standard deviation is known (the z test), power, statistical versus practical significance, and inferences about a single mean when the population standard deviation is unknown (the t test).

In this chapter, we consider inferential tests involving the difference between two means. In other words, our research question is the extent to which two sample means are statistically different and, by inference, the extent to which their respective population means are different. Several inferential tests are covered in this chapter, depending on whether
the two samples are selected in an independent or dependent manner, and on whether
the statistical assumptions are met. More specifically, the topics described include the fol-
lowing inferential tests: for two independent samples—the independent t test, the Welch
t' test, and briefly the Mann–Whitney–Wilcoxon test; and for two dependent samples—the
dependent t test and briefly the Wilcoxon signed ranks test. We use many of the founda-
tional concepts previously covered in Chapter 6. New concepts to be discussed include the
following: independent versus dependent samples, the sampling distribution of the dif-
ference between two means, and the standard error of the difference between two means.
Our objectives are that by the end of this chapter, you will be able to (a) understand the
basic concepts underlying the inferential tests of two means, (b) select the appropriate test,
and (c) determine and interpret the results from the appropriate test.

7.1 New Concepts

Remember Marie, our very capable educational researcher graduate student? Let us see
what Marie has in store for her now....

Marie’s first attempts at consulting went so well that her faculty advisor has assigned
Marie two additional consulting responsibilities with individuals from their commu-
nity. Marie has been asked to consult with a local nurse practitioner, JoAnn, who is
studying cholesterol levels of adults and how they differ based on gender. Marie sug-
gests the following research question: Is there a mean difference in cholesterol level between
males and females? Marie suggests an independent samples t test as the test of infer-
ence. Her task is then to assist JoAnn in generating the test of inference to answer her
research question.

Marie has also been asked to consult with the swimming coach, Mark, who works
with swimming programs that are offered through their local Parks and Recreation
Department. Mark has just conducted an intensive 2 month training program for a
group of 10 swimmers. He wants to determine if, on average, their time in the 50 meter
freestyle event is different after the training. The following research question is sug-
gested by Marie: Is there a mean difference in swim time for the 50-meter freestyle event before
participation in an intensive training program as compared to swim time for the 50-meter fre-
estyle event after participation in an intensive training program? Marie suggests a dependent
samples t test as the test of inference. Her task is then to assist Mark in generating the
test of inference to answer his research question.

Before we proceed to inferential tests of the difference between two means, a few new
concepts need to be introduced. The new concepts are the difference between the selec-
tion of independent samples and dependent samples, the hypotheses to be tested, and the
sampling distribution of the difference between two means.

7.1.1 Independent Versus Dependent Samples

The first new concept to address is to make a distinction between the selection of indepen-
dent samples and dependent samples. Two samples are independent when the method
of sample selection is such that those individuals selected for sample 1 do not have any
relationship to those individuals selected for sample 2. In other words, the selection of individuals to be included in the two samples are unrelated or uncorrelated such that they have absolutely nothing to do with one another. You might think of the samples as being selected totally separate from one another. Because the individuals in the two samples are independent of one another, their scores on the dependent variable, \(Y \), should also be independent of one another. The independence condition leads us to consider, for example, the **independent samples** \(t \) **test**. (This should not, however, be confused with the assumption of independence, which was introduced in the previous chapter. The assumption of independence still holds for the independent samples \(t \) test, and we will talk later about how this assumption can be met with this particular procedure.)

Two samples are **dependent** when the method of sample selection is such that those individuals selected for sample 1 do have a relationship to those individuals selected for sample 2. In other words, the selections of individuals to be included in the two samples are related or correlated. You might think of the samples as being selected simultaneously such that there are actually pairs of individuals. Consider the following two typical examples. First, if the same individuals are measured at two points in time, such as during a pretest and a posttest, then we have two dependent samples. The scores on \(Y \) at time 1 will be correlated with the scores on \(Y \) at time 2 because the same individuals are assessed at both time points. Second, if husband-and-wife pairs are selected, then we have two dependent samples. That is, if a particular wife is selected for the study, then her corresponding husband is also automatically selected—this is an example where individuals are paired or matched in some way such that they share characteristics that makes the score of one person related to (i.e., dependent on) the score of the other person. In both examples, we have natural pairs of individuals or scores. The dependence condition leads us to consider the **dependent samples** \(t \) **test**, alternatively known as the **correlated samples** \(t \) **test** or the **paired samples** \(t \) **test**. As we show in this chapter, whether the samples are independent or dependent determines the appropriate inferential test.

7.1.2 Hypotheses

The hypotheses to be evaluated for detecting a difference between two means are as follows. The null hypothesis \(H_0 \) is that there is no difference between the two population means, which we denote as the following:

\[
H_0: \mu_1 - \mu_2 = 0 \quad \text{or} \quad H_0: \mu_1 = \mu_2
\]

where

- \(\mu_1 \) is the population mean for sample 1
- \(\mu_2 \) is the population mean for sample 2

Mathematically, both equations say the same thing. The version on the left makes it clear to the reader why the term “null” is appropriate. That is, there is no difference or a “null” difference between the two population means. The version on the right indicates that the population mean of sample 1 is the same as the population mean of sample 2—another way of saying that there is no difference between the means (i.e., they are the same). The nondirectional scientific or alternative hypothesis \(H_1 \) is that there is a difference between the two population means, which we denote as follows:

\[
H_1: \mu_1 - \mu_2 \neq 0 \quad \text{or} \quad H_1: \mu_1 \neq \mu_2
\]
The null hypothesis H_0 will be rejected here in favor of the alternative hypothesis H_1 if the population means are different. As we have not specified a direction on H_1, we are willing to reject either if μ_1 is greater than μ_2 or if μ_1 is less than μ_2. This alternative hypothesis results in a two-tailed test.

Directional alternative hypotheses can also be tested if we believe μ_1 is greater than μ_2, denoted as follows:

$$H_1: \mu_1 - \mu_2 > 0 \quad \text{or} \quad H_1: \mu_1 > \mu_2$$

In this case, the equation on the left tells us that when μ_2 is subtracted from μ_1, a positive value will result (i.e., some value greater than 0). The equation on the right makes it somewhat clearer what we hypothesize.

Or if we believe μ_1 is less than μ_2, the directional alternative hypotheses will be denoted as we see here:

$$H_1: \mu_1 - \mu_2 < 0 \quad \text{or} \quad H_1: \mu_1 < \mu_2$$

In this case, the equation on the left tells us that when μ_2 is subtracted from μ_1, a negative value will result (i.e., some value less than 0). The equation on the right makes it somewhat clearer what we hypothesize. Regardless of how they are denoted, directional alternative hypotheses result in a one-tailed test.

The underlying sampling distribution for these tests is known as the sampling distribution of the difference between two means. This makes sense, as the hypotheses examine the extent to which two sample means differ. The mean of this sampling distribution is 0, as that is the hypothesized difference between the two population means $\mu_1 - \mu_2$. The more the two sample means differ, the more likely we are to reject the null hypothesis. As we show later, the test statistics in this chapter all deal in some way with the difference between the two means and with the standard error (or standard deviation) of the difference between two means.

7.2 Inferences About Two Independent Means

In this section, three inferential tests of the difference between two independent means are described: the independent t test, the Welch t' test, and briefly the Mann–Whitney–Wilcoxon test. The section concludes with a list of recommendations.

7.2.1 Independent t Test

First, we need to determine the conditions under which the independent t test is appropriate. In part, this has to do with the statistical assumptions associated with the test itself. The assumptions of the independent t test are that the scores on the dependent variable Y (a) are normally distributed within each of the two populations, (b) have equal population variances (known as homogeneity of variance or homoscedasticity), and (c) are independent. (The assumptions of normality and independence should sound familiar as they were introduced as we learned about the one-sample t test.) Later in the chapter, we more
fully discuss the assumptions for this particular procedure. When these assumptions are not met, other procedures may be more appropriate, as we also show later.

The measurement scales of the variables must also be appropriate. Because this is a test of means, the dependent variable must be measured on an interval or ratio scale. The independent variable, however, must be nominal or ordinal, and only two categories or groups of the independent variable can be used with the independent t test. (In later chapters, we will learn about analysis of variance (ANOVA) which can accommodate an independent variable with more than two categories.) It is not a condition of the independent t test that the sample sizes of the two groups be the same. An unbalanced design (i.e., unequal sample sizes) is perfectly acceptable.

The test statistic for the independent t test is known as t and is denoted by the following formula:

$$ t = \frac{\bar{Y}_1 - \bar{Y}_2}{s_{\bar{Y}_1-\bar{Y}_2}} $$

where

- \bar{Y}_1 and \bar{Y}_2 are the means for sample 1 and sample 2, respectively
- $s_{\bar{Y}_1-\bar{Y}_2}$ is the standard error of the difference between two means

This standard error is the standard deviation of the sampling distribution of the difference between two means and is computed as follows:

$$ s_{\bar{Y}_1-\bar{Y}_2} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} $$

where s_p is the pooled standard deviation computed as

$$ s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} $$

and where

- s_1^2 and s_2^2 are the sample variances for groups 1 and 2, respectively
- n_1 and n_2 are the sample sizes for groups 1 and 2, respectively

Conceptually, the standard error $s_{\bar{Y}_1-\bar{Y}_2}$ is a pooled standard deviation weighted by the two sample sizes; more specifically, the two sample variances are weighted by their respective sample sizes and then pooled. This is conceptually similar to the standard error for the one-sample t test, which you will recall from Chapter 6 as

$$ s_T = \frac{s_Y}{\sqrt{n}} $$

where we also have a standard deviation weighted by sample size. If the sample variances are not equal, as the test assumes, then you can see why we might not want to take a pooled or weighted average (i.e., as it would not represent well the individual sample variances).
The test statistic t is then compared to a critical value(s) from the t distribution. For a two-tailed test, from Table A.2, we would use the appropriate α column depending on the desired level of significance and the appropriate row depending on the degrees of freedom. The degrees of freedom for this test are $n_1 + n_2 - 2$. Conceptually, we lose one degree of freedom from each sample for estimating the population variances (i.e., there are two restrictions along the lines of what was discussed in Chapter 6). The critical values are denoted as $\pm_{\alpha} t_{n_1+n_2-2}$. The subscript α of the critical values reflects the fact that this is a two-tailed test, and the subscript $n_1 + n_2 - 2$ indicates these particular degrees of freedom. (Remember that the critical value can be found based on the knowledge of the degrees of freedom and whether it is a one- or two-tailed test.) If the test statistic falls into either critical region, then we reject H_{α}; otherwise, we fail to reject H_{α}.

For a one-tailed test, from Table A.2, we would use the appropriate α column depending on the desired level of significance and the appropriate row depending on the degrees of freedom. The degrees of freedom are again $n_1 + n_2 - 2$. The critical value is denoted as $+_{\alpha} t_{n_1+n_2-2}$ for the alternative hypothesis H_1: $\mu_1 - \mu_2 > 0$ (i.e., right-tailed test so the critical value will be positive), and as $-_{\alpha} t_{n_1+n_2-2}$ for the alternative hypothesis H_1: $\mu_1 - \mu_2 < 0$ (i.e., left-tailed test and thus a negative critical value). If the test statistic t falls into the appropriate critical region, then we reject H_{α}; otherwise, we fail to reject H_{α}.

7.2.1.1 Confidence Interval

For the two-tailed test, a $(1 - \alpha)\%$ confidence interval (CI) can also be examined. The CI is formed as follows:

$$\left(\overline{Y}_1 - \overline{Y}_2\right) \pm_{\alpha} t_{n_1+n_2-2}\left(s_{\overline{Y}_1-\overline{Y}_2}\right)$$

If the CI contains the hypothesized mean difference of 0, then the conclusion is to fail to reject H_{α}; otherwise, we reject H_{α}. The interpretation and use of CIs is similar to that of the one-sample test described in Chapter 6. Imagine we take 100 random samples from each of two populations and construct 95% CIs. Then 95% of the CIs will contain the true population mean difference $\mu_1 - \mu_2$, and 5% will not. In short, 95% of similarly constructed CIs will contain the true population mean difference.

7.2.1.2 Effect Size

Next we extend Cohen's (1988) sample measure of effect size d from Chapter 6 to the two independent samples situation. Here we compute d as follows:

$$d = \frac{\overline{Y}_1 - \overline{Y}_2}{s_p}$$

The numerator of the formula is the difference between the two sample means. The denominator is the pooled standard deviation, for which the formula was presented previously. Thus, the effect size d is measured in standard deviation units, and again we use Cohen's proposed subjective standards for interpreting d: small effect size, $d = .2$; medium effect size, $d = .5$; large effect size, $d = .8$. Conceptually, this is similar to d in the one-sample case from Chapter 6. The effect size d is considered a standardized group difference type of effect size (Huberty, 2002). There are other types of effect sizes, however. Another is eta squared (η^2),
also a standardized effect size, and it is considered a relationship type of effect size (Huberty, 2002). For the independent \(t \) test, \(\eta \) squared can be calculated as follows:

\[
\eta^2 = \frac{t^2}{t^2 + df} = \frac{t^2}{t^2 + (n_1 + n_2 - 2)}
\]

Here the numerator is the squared \(t \) test statistic value, and the denominator is sum of the squared \(t \) test statistic value and the degrees of freedom. Values for \(\eta \) squared range from 0 to +1.00, where values closer to one indicate a stronger association. In terms of what this effect size tells us, \(\eta \) squared is interpreted as the proportion of variance accounted for in the dependent variable by the independent variable and indicates the degree of the relationship between the independent and dependent variables. If we use Cohen’s (1988) metric for interpreting \(\eta \) squared: small effect size, \(\eta^2 = .01 \); moderate effect size, \(\eta^2 = .06 \); large effect size, \(\eta^2 = .14 \).

7.2.1.3 Example of the Independent \(t \) Test

Let us now consider an example where the independent \(t \) test is implemented. Recall from Chapter 6 the basic steps for hypothesis testing for any inferential test: (1) State the null and alternative hypotheses, (2) select the level of significance (i.e., alpha, \(\alpha \)), (3) calculate the test statistic value, and (4) make a statistical decision (reject or fail to reject \(H_0 \)). We will follow these steps again in conducting our independent \(t \) test. In our example, samples of 8 female and 12 male middle-age adults are randomly and independently sampled from the populations of female and male middle-age adults, respectively. Each individual is given a cholesterol test through a standard blood sample. The null hypothesis to be tested is that males and females have equal cholesterol levels. The alternative hypothesis is that males and females will not have equal cholesterol levels, thus necessitating a nondirectional or two-tailed test. We will conduct our test using an alpha level of .05. The raw data and summary statistics are presented in Table 7.1. For the female sample (sample 1), the mean and variance are 185.0000 and 364.2857, respectively, and for the male sample (sample 2), the mean and variance are 215.0000 and 913.6363, respectively.

In order to compute the test statistic \(t \), we first need to determine the standard error of the difference between the two means. The pooled standard deviation is computed as

\[
s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} = \sqrt{\frac{(8 - 1)364.2857 + (12 - 1)913.6363}{8 + 12 - 2}} = 26.4575
\]

and the standard error of the difference between two means is computed as

\[
s_{\bar{Y}_1 - \bar{Y}_2} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} = 26.4575 \sqrt{\frac{1}{8} + \frac{1}{12}} = 12.0752
\]

The test statistic \(t \) can then be computed as

\[
t = \frac{\bar{Y}_1 - \bar{Y}_2}{s_{\bar{Y}_1 - \bar{Y}_2}} = \frac{185 - 215}{12.0752} = -2.4844
\]
The next step is to use Table A.2 to determine the critical values. As there are 18 degrees of freedom \((n_1 + n_2 - 2 = 8 + 12 - 2 = 18)\), using \(\alpha = .05\) and a two-tailed or nondirectional test, we find the critical values using the appropriate \(\alpha\) column to be \(+2.101\) and \(-2.101\). Since the test statistic falls beyond the critical values as shown in Figure 7.1, we therefore reject the null hypothesis that the means are equal in favor of the nondirectional alternative that the means are not equal. Thus, we conclude that the mean cholesterol levels for males and females are not equal at the .05 level of significance (denoted by \(p < .05\)).

The 95% CI can also be examined. For the cholesterol example, the CI is formed as follows:

\[
(\overline{Y}_1 - \overline{Y}_2) \pm t_{n_1 + n_2 - 2}(s^2_{n_1 - n_2}) = (185 - 215) \pm 2.101(12.0752) = -30 \pm 25.3700 = (-55.3700, -4.6300)
\]
As the CI does not contain the hypothesized mean difference value of 0, then we would again reject the null hypothesis and conclude that the mean gender difference in cholesterol levels was not equal to 0 at the .05 level of significance \((p < .05) \). In other words, there is evidence to suggest that the males and females differ, on average, on cholesterol level. More specifically, the mean cholesterol level for males is greater than the mean cholesterol level for females.

The effect size for this example is computed as follows:

\[
d = \frac{\bar{Y}_1 - \bar{Y}_2}{s_p} = \frac{185 - 215}{26.4575} = -1.1339
\]

According to Cohen’s recommended subjective standards, this would certainly be a rather large effect size, as the difference between the two sample means is larger than one standard deviation. Rather than \(d \), had we wanted to compute eta squared, we would have also found a large effect:

\[
\eta^2 = \frac{t^2}{t^2 + df} = \frac{(-2.4844)^2}{(-2.4844)^2 + (18)} = .2553
\]

An eta squared value of .26 indicates a large relationship between the independent and dependent variables, with 26% of the variance in the dependent variable (i.e., cholesterol level) accounted for by the independent variable (i.e., gender).

7.2.1.4 Assumptions

Let us return to the assumptions of normality, independence, and homogeneity of variance. For the independent \(t \) test, the assumption of normality is met when the dependent variable is normally distributed for each sample (i.e., each category or group) of the independent variable. The normality assumption is made because we are dealing with a parametric inferential test. **Parametric tests** assume a particular underlying theoretical population distribution, in this case, the normal distribution. **Nonparametric tests** do not assume a particular underlying theoretical population distribution.

Conventional wisdom tells us the following about nonnormality. When the normality assumption is violated with the independent \(t \) test, the effects on Type I and Type II errors are minimal when using a two-tailed test (e.g., Glass, Peckham, & Sanders, 1972; Sawilowsky & Blair, 1992). When using a one-tailed test, violation of the normality assumption is minimal for samples larger than 10 and disappears for samples of at least 20 (Sawilowsky & Blair, 1992; Tiku & Singh, 1981). The simplest methods for detecting violation of the normality assumption are graphical methods, such as stem-and-leaf plots, box plots, histograms, or Q–Q plots, statistical procedures such as the Shapiro–Wilk (S–W) test (1965), and/or skewness and kurtosis statistics. However, more recent research by Wilcox (2003) indicates that power for both the independent \(t \) and Welch \(t’ \) can be reduced even for slight departures from normality, with outliers also contributing to the problem. Wilcox recommends several procedures not readily available and beyond the scope of this text (such as bootstrap methods, trimmed means, medians). Keep in mind, though, that the independent \(t \) test is fairly robust to nonnormality in most situations.

The independence assumption is also necessary for this particular test. For the independent \(t \) test, the assumption of independence is met when there is random assignment of
individuals to the two groups or categories of the independent variable. Random assignment to the two samples being studied provides for greater internal validity—the ability to state with some degree of confidence that the independent variable caused the outcome (i.e., the dependent variable). If the independence assumption is not met, then probability statements about the Type I and Type II errors will not be accurate; in other words, the probability of a Type I or Type II error may be increased as a result of the assumption not being met. Zimmerman (1997) found that Type I error was affected even for relatively small relations or correlations between the samples (i.e., even as small as .10 or .20). In general, the assumption can be met by (a) keeping the assignment of individuals to groups separate through the design of the experiment (specifically random assignment—not to be confused with random selection), and (b) keeping the individuals separate from one another through experimental control so that the scores on the dependent variable \(Y \) for sample 1 do not influence the scores for sample 2. Zimmerman also stated that independence can be violated for supposedly independent samples due to some type of matching in the design of the experiment (e.g., matched pairs based on gender, age, and weight). If the observations are not independent, then the dependent \(t \) test, discussed further in the chapter, may be appropriate.

Of potentially more serious concern is violation of the homogeneity of variance assumption. Homogeneity of variance is met when the variances of the dependent variable for the two samples (i.e., the two groups or categories of the independent variables) are the same. Research has shown that the effect of heterogeneity (i.e., unequal variances) is minimal when the sizes of the two samples, \(n_1 \) and \(n_2 \), are equal; this is not the case when the sample sizes are not equal. When the larger variance is associated with the smaller sample size (e.g., group 1 has the larger variance and the smaller \(n \)), then the actual \(\alpha \) level is larger than the nominal \(\alpha \) level. In other words, if you set \(\alpha \) at .05, then you are not really conducting the test at the .05 level, but at some larger value. When the larger variance is associated with the larger sample size (e.g., group 1 has the larger variance and the larger \(n \)), then the actual \(\alpha \) level is smaller than the nominal \(\alpha \) level. In other words, if you set \(\alpha \) at .05, then you are not really conducting the test at the .05 level, but at some smaller value.

One can use statistical tests to detect violation of the homogeneity of variance assumption, although the most commonly used tests are somewhat problematic. These tests include Hartley’s \(F_{\text{max}} \) test (for equal \(n \)'s, but sensitive to nonnormality; it is the unequal \(n \)'s situation that we are concerned with anyway), Cochran’s test (for equal \(n \)'s, but even more sensitive to nonnormality than Hartley’s test; concerned with unequal \(n \)'s situation anyway), Levene’s test (for equal \(n \)'s, but sensitive to nonnormality; concerned with unequal \(n \)'s situation anyway) (available in SPSS), the Bartlett test (for unequal \(n \)'s, but very sensitive to nonnormality), the Box–Scheffé–Anderson test (for unequal \(n \)'s, fairly robust to nonnormality), and the Browne–Forsythe test (for unequal \(n \)'s, more robust to nonnormality than the Box–Scheffé–Anderson test and therefore recommended). When the variances are unequal and the sample sizes are unequal, the usual method to use as an alternative to the independent \(t \) test is the Welch \(t' \) test described in the next section. Inferential tests for evaluating homogeneity of variance are more fully considered in Chapter 9.

7.2.2 Welch \(t' \) Test

The Welch \(t' \) test is usually appropriate when the population variances are unequal and the sample sizes are unequal. The Welch \(t' \) test assumes that the scores on the dependent variable \(Y \) (a) are normally distributed in each of the two populations and (b) are independent.
The test statistic is known as t' and is denoted by

$$t' = \frac{\bar{Y}_1 - \bar{Y}_2}{s_{\bar{Y}_1 - \bar{Y}_2}} = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{s_{\bar{Y}_1}^2 + s_{\bar{Y}_2}^2}} = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

where

\bar{Y}_1 and \bar{Y}_2 are the means for samples 1 and 2, respectively.

$s_{\bar{Y}_1}^2$ and $s_{\bar{Y}_2}^2$ are the variance errors of the means for samples 1 and 2, respectively.

Here we see that the denominator of this test statistic is conceptually similar to the one-sample t and the independent t test statistics. The variance errors of the mean are computed for each group by

$$s_{\bar{Y}_1}^2 = \frac{s_1^2}{n_1}$$

$$s_{\bar{Y}_2}^2 = \frac{s_2^2}{n_2}$$

where s_1^2 and s_2^2 are the sample variances for groups 1 and 2, respectively. The square root of the variance error of the mean is the standard error of the mean (i.e., $s_{\bar{Y}_1}$ and $s_{\bar{Y}_2}$). Thus, we see that rather than take a pooled or weighted average of the two sample variances as we did with the independent t test, the two sample variances are treated separately with the Welch t' test.

The test statistic t' is then compared to a critical value(s) from the t distribution in Table A.2. We again use the appropriate α column depending on the desired level of significance and whether the test is one- or two-tailed (i.e., α_1 and α_2), and the appropriate row for the degrees of freedom. The degrees of freedom for this test are a bit more complicated than for the independent t test. The degrees of freedom are adjusted from $n_1 + n_2 - 2$ for the independent t test to the following value for the Welch t' test:

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1}\right)^2 \left(\frac{n_1}{n_1 - 1}\right) + \left(\frac{s_2^2}{n_2}\right)^2 \left(\frac{n_2}{n_2 - 1}\right)}$$

The degrees of freedom v are approximated by rounding to the nearest whole number prior to using the table. If the test statistic falls into a critical region, then we reject $H_{\theta'}$; otherwise, we fail to reject H_{θ}.

For the two-tailed test, a $(1 - \alpha)\%$ CI can also be examined. The CI is formed as follows:

$$(\bar{Y}_1 - \bar{Y}_2) \pm \alpha_2 t_v (s_{\bar{Y}_1 - \bar{Y}_2})$$

If the CI contains the hypothesized mean difference of 0, then the conclusion is to fail to reject $H_{\theta'}$; otherwise, we reject H_{θ}. Thus, interpretation of this CI is the same as with the independent t test.
Consider again the example cholesterol data where the sample variances were somewhat different and the sample sizes were different. The variance errors of the mean are computed for each sample as follows:

\[s^2_{Y_1} = \frac{s^2_1}{n_1} = \frac{364.2857}{8} = 45.5357 \]

\[s^2_{Y_2} = \frac{s^2_2}{n_2} = \frac{913.6363}{12} = 76.1364 \]

The \(t' \) test statistic is computed as

\[t' = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{s^2_{Y_1} + s^2_{Y_2}}} = \frac{185 - 215}{\sqrt{45.5357 + 76.1364}} = \frac{-30}{11.0305} = -2.7197 \]

Finally, the degrees of freedom \(\nu \) are determined to be

\[\nu = \frac{(s^2_{Y_1} + s^2_{Y_2})^2}{\frac{(s^2_{Y_1})^2}{n_1 - 1} + \frac{(s^2_{Y_2})^2}{n_2 - 1}} = \frac{(45.5357 + 76.1364)^2}{8 - 1 + (76.1364)^2} = 17.9838 \]

which is rounded to 18, the nearest whole number. The degrees of freedom remain 18 as they were for the independent \(t \) test, and thus, the critical values are still \(+2.101\) and \(-2.101\). As the test statistic falls beyond the critical values as shown in Figure 7.1, we therefore reject the null hypothesis that the means are equal in favor of the alternative that the means are not equal. Thus, as with the independent \(t \) test, with the Welch \(t' \) test, we conclude that the mean cholesterol levels for males and females are not equal at the .05 level of significance. In this particular example, then, we see that the unequal sample variances and unequal sample sizes did not alter the outcome when comparing the independent \(t \) test result with the Welch \(t' \) test result. However, note that the results for these two tests may differ with other data.

Finally, the 95% CI can be examined. For the example, the CI is formed as follows:

\[(\bar{Y}_1 - \bar{Y}_2) \pm a_2 t_\nu(s_{Y_1 - Y_2}) = (185 - 215) \pm 2.101(11.0305) = -30 \pm 23.1751 = (-53.1751, -6.8249) \]

As the CI does not contain the hypothesized mean difference value of 0, then we would again reject the null hypothesis and conclude that the mean gender difference was not equal to 0 at the .05 level of significance (\(p < .05 \)).

7.2.3 Recommendations

The following four recommendations are made regarding the two independent samples case. Although there is no total consensus in the field, our recommendations take into account, as much as possible, the available research and statistical software. First, if the normality assumption is satisfied, the following recommendations are made: (a) the
independent *t* test is recommended when the homogeneity of variance assumption is met; (b) the independent *t* test is recommended when the homogeneity of variance assumption is not met and when there are an equal number of observations in the samples; and (c) the Welch *t*′ test is recommended when the homogeneity of variance assumption is not met and when there are an unequal number of observations in the samples.

Second, if the normality assumption is *not* satisfied, the following recommendations are made: (a) if the homogeneity of variance assumption is met, then the independent *t* test using ranked scores (Conover & Iman, 1981), rather than raw scores, is recommended; and (b) if homogeneity of variance assumption is *not* met, then the Welch *t*′ test using ranked scores is recommended, regardless of whether there are an equal number of observations in the samples. Using ranked scores means you rank order the observations from highest to lowest regardless of group membership, then conduct the appropriate *t* test with ranked scores rather than raw scores.

Third, the dependent *t* test is recommended when there is some dependence between the groups (e.g., matched pairs or the same individuals measured on two occasions), as described later in this chapter. Fourth, the nonparametric Mann-Whitney-Wilcoxon test is not recommended. Among the disadvantages of this test are that (a) the critical values are not extensively tabulated, (b) tied ranks can affect the results and no optimal procedure has yet been developed (Wilcox, 1996), and (c) Type I error appears to be inflated regardless of the status of the assumptions (Zimmerman, 2003). For these reasons, the Mann–Whitney–Wilcoxon test is not further described here. Note that most major statistical packages, including SPSS, have options for conducting the independent *t* test, the Welch *t*′ test, and the Mann-Whitney-Wilcoxon test. Alternatively, one could conduct the Kruskal–Wallis nonparametric one-factor ANOVA, which is also based on ranked data, and which is appropriate for comparing the means of two or more independent groups. This test is considered more fully in Chapter 11. These recommendations are summarized in Box 7.1.

STOP AND THINK BOX 7.1

Recommendations for the Independent and Dependent Samples Tests Based on Meeting or Violating the Assumption of Normality

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Independent Samples Tests</th>
<th>Dependent Samples Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normality is met</td>
<td>• Use the independent t test when homogeneity of variances is met</td>
<td>• Use the dependent t test</td>
</tr>
<tr>
<td></td>
<td>• Use the independent t test when homogeneity of variances is not met, but</td>
<td></td>
</tr>
<tr>
<td></td>
<td>there are equal sample sizes in the groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use the Welch t′ test when homogeneity of variances is not met and there are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>unequal sample sizes in the groups</td>
<td></td>
</tr>
<tr>
<td>Normality is not met</td>
<td>• Use the independent t test with ranked scores when homogeneity of variances is</td>
<td></td>
</tr>
<tr>
<td></td>
<td>not met</td>
<td>• Use the dependent t test with ranked</td>
</tr>
<tr>
<td></td>
<td>• Use the Welch t′ test with ranked scores when homogeneity of variances is not</td>
<td>scores, or alternative procedures</td>
</tr>
<tr>
<td></td>
<td>met, regardless of equal or unequal sample sizes in the groups</td>
<td>including bootstrap methods,</td>
</tr>
<tr>
<td></td>
<td>• Use the Kruskal–Wallis nonparametric procedure</td>
<td>trimmed means, medians, or Stein’s method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the Wilcoxon signed ranks test</td>
</tr>
<tr>
<td></td>
<td></td>
<td>when data are both nonnormal and have</td>
</tr>
<tr>
<td></td>
<td></td>
<td>extreme outliers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the Friedman nonparametric procedure</td>
</tr>
</tbody>
</table>
7.3 Inferences About Two Dependent Means

In this section, two inferential tests of the difference between two dependent means are described, the dependent \(t \) test and briefly the Wilcoxon signed ranks test. The section concludes with a list of recommendations.

7.3.1 Dependent \(t \) Test

As you may recall, the dependent \(t \) test is appropriate to use when there are two samples that are dependent—the individuals in sample 1 have some relationship to the individuals in sample 2. First, we need to determine the conditions under which the dependent \(t \) test is appropriate. In part, this has to do with the statistical assumptions associated with the test itself—that is, (a) normality of the distribution of the differences of the dependent variable \(Y \), (b) homogeneity of variance of the two populations, and (c) independence of the observations within each sample. Like the independent \(t \) test, the dependent \(t \) test is reasonably robust to violation of the normality assumption, as we show later. Because this is a test of means, the dependent variable must be measured on an interval or ratio scale. For example, the same individuals may be measured at two points in time on the same interval-scaled pretest and posttest, or some matched pairs (e.g., twins or husbands–wives) may be assessed with the same ratio-scaled measure (e.g., weight measured in pounds).

Although there are several methods for computing the test statistic \(t \), the most direct method and the one most closely aligned conceptually with the one-sample \(t \) test is as follows:

\[
t = \frac{\bar{d}}{s_{\bar{d}}}
\]

where
\[
\bar{d} \text{ is the mean difference}
\]
\[
s_{\bar{d}} \text{ is the standard error of the mean difference}
\]

Conceptually, this test statistic looks just like the one-sample \(t \) test statistic, except now that the notation has been changed to denote that we are dealing with difference scores rather than raw scores.

The standard error of the mean difference is computed by

\[
s_{\bar{d}} = \frac{s_{d}}{\sqrt{n}}
\]

where
\[
s_{d} \text{ is the standard deviation of the difference scores (i.e., like any other standard deviation, only this one is computed from the difference scores rather than raw scores)}
\]
\[
n \text{ is the total number of pairs}
\]

Conceptually, this standard error looks just like the standard error for the one-sample \(t \) test. If we were doing hand computations, we would compute a difference score for each pair of scores (i.e., \(Y_1 - Y_2 \)). For example, if sample 1 were wives and sample 2 were their husbands, then we calculate a difference score for each couple. From this set of difference scores, we then compute the mean of the difference scores \(\bar{d} \) and standard deviation of the difference scores.
Inferences About the Difference Between Two Means

scores \(s_d \). This leads us directly into the computation of the \(t \) test statistic. Note that although there are \(n \) scores in sample 1, \(n \) scores in sample 2, and thus \(2n \) total scores, there are only \(n \) difference scores, which is what the analysis is actually based upon.

The test statistic \(t \) is then compared with a critical value(s) from the \(t \) distribution. For a two-tailed test, from Table A.2, we would use the appropriate \(\alpha_2 \) column depending on the desired level of significance and the appropriate row depending on the degrees of freedom. The degrees of freedom for this test are \(n - 1 \). Conceptually, we lose one degree of freedom from the number of differences (or pairs) because we are estimating the population variance (or standard deviation) of the difference. Thus, there is one restriction along the lines of our discussion of degrees of freedom in Chapter 6. The critical values are denoted as \(\pm \alpha_2 t_{n-1} \). The subscript, \(\alpha_2 \), of the critical values reflects the fact that this is a two-tailed test, and the subscript \(n - 1 \) indicates the degrees of freedom. If the test statistic falls into either critical region, then we reject \(H_0 \); otherwise, we fail to reject \(H_0 \).

For a one-tailed test, from Table A.2, we would use the appropriate \(\alpha_1 \) column depending on the desired level of significance and the appropriate row depending on the degrees of freedom. The degrees of freedom are again \(n - 1 \). The critical value is denoted as \(+\alpha_1 t_{n-1} \) for the alternative hypothesis \(H_1 \): \(\mu_1 - \mu_2 > 0 \) and as \(-\alpha_1 t_{n-1} \) for the alternative hypothesis \(H_1 \): \(\mu_1 - \mu_2 < 0 \). If the test statistic \(t \) falls into the appropriate critical region, then we reject \(H_0 \); otherwise, we fail to reject \(H_0 \).

7.3.1.1 Confidence Interval

For the two-tailed test, a \((1 - \alpha)\%\) CI can also be examined. The CI is formed as follows:

\[
\bar{d} \pm \alpha_2 t_{n-1}(s_d)
\]

If the CI contains the hypothesized mean difference of 0, then the conclusion is to fail to reject \(H_0 \); otherwise, we reject \(H_0 \). The interpretation of these CIs is the same as those previously discussed for the one-sample \(t \) and the independent \(t \).

7.3.1.2 Effect Size

The effect size can be measured using Cohen’s (1988) \(d \) computed as follows:

\[
Cohen \ d = \frac{\bar{d}}{s_d}
\]

where Cohen’s \(d \) is simply used to distinguish among the various uses and slight differences in the computation of \(d \). Interpretation of the value of \(d \) would be the same as for the one-sample \(t \) and the independent \(t \) previously discussed—specifically, the number of standard deviation units for which the mean(s) differ(s).

7.3.1.3 Example of the Dependent \(t \) Test

Let us consider an example for purposes of illustrating the dependent \(t \) test. Ten young swimmers participated in an intensive 2 month training program. Prior to the program, each swimmer was timed during a 50 meter freestyle event. Following the program, the
same swimmers were timed in the 50 meter freestyle event again. This is a classic pretest-
posttest design. For illustrative purposes, we will conduct a two-tailed test. However, a
case might also be made for a one-tailed test as well, in that the coach might want to
see improvement only. However, conducting a two-tailed test allows us to examine the
CI for purposes of illustration. The raw scores, the difference scores, and the mean and
standard deviation of the difference scores are shown in Table 7.2. The pretest mean time
was 64 seconds and the posttest mean time was 59 seconds.

To determine our test statistic value, t, first we compute the standard error of the mean
difference as follows:

$$s_d = \frac{s_d}{\sqrt{n}} = \frac{2.1602}{\sqrt{10}} = 0.6831$$

Next, using this value for the denominator, the test statistic t is then computed as follows:

$$t = \frac{\bar{d}}{s_d} = \frac{5}{0.6831} = 7.3196$$

We then use Table A.2 to determine the critical values. As there are nine degrees of free-
dom $(n - 1 = 10 - 1 = 9)$, using $\alpha = .05$ and a two-tailed or nondirectional test, we find the
critical values using the appropriate $t_{0.05}$ column to be $+2.262$ and -2.262. Since the test statistic falls beyond the critical values, as shown in Figure 7.2, we reject the null hypothesis
that the means are equal in favor of the nondirectional alternative that the means are not equal. Thus, we conclude that the mean swimming performance changed from pretest to posttest at the .05 level of significance $(p < .05)$.

The 95% CI is computed to be the following:

$$\bar{d} \pm t_{0.05}(s_d) = 5 \pm 2.262(0.6831) = 5 \pm 1.5452 = (3.4548, 6.5452)$$
Inferences About the Difference Between Two Means

As the CI does not contain the hypothesized mean difference value of 0, we would again reject the null hypothesis and conclude that the mean pretest-posttest difference was not equal to 0 at the .05 level of significance \(p < .05 \).

The effect size is computed to be the following:

\[
Cohen\ d = \frac{\bar{d}}{s_d} = \frac{5}{2.1602} = 2.3146
\]

which is interpreted as there is approximately a two and one-third standard deviation difference between the pretest and posttest mean swimming times, a very large effect size according to Cohen’s subjective standard.

7.3.1.4 Assumptions

Let us return to the assumptions of normality, independence, and homogeneity of variance. For the dependent \(t \) test, the assumption of normality is met when the difference scores are normally distributed. Normality of the difference scores can be examined as discussed previously—graphical methods (such as stem-and-leaf plots, box plots, histograms, and/or Q–Q plots), statistical procedures such as the S–W test (1965), and/or skewness and kurtosis statistics. The assumption of independence is met when the cases in our sample have been randomly selected from the population. If the independence assumption is not met, then probability statements about the Type I and Type II errors will not be accurate; in other words, the probability of a Type I or Type II error may be increased as a result of the assumption not being met. Homogeneity of variance refers to equal variances of the two populations. In later chapters, we will examine procedures for formally testing for equal variances. For the moment, if the ratio of the smallest to largest sample variance is within 1:4, then we have evidence to suggest the assumption of homogeneity of variances is met. Research has shown that the effect of heterogeneity (i.e., unequal variances) is minimal when the sizes of the two samples, \(n_1 \) and \(n_2 \), are equal, as is the case with the dependent \(t \) test by definition (unless there are missing data).
7.3.2 Recommendations

The following three recommendations are made regarding the two dependent samples case. First, the dependent \(t \) test is recommended when the normality assumption is met. Second, the dependent \(t \) test using ranks (Conover & Iman, 1981) is recommended when the normality assumption is not met. Here you rank order the difference scores from highest to lowest, then conduct the test on the ranked difference scores rather than on the raw difference scores. However, more recent research by Wilcox (2003) indicates that power for the dependent \(t \) can be reduced even for slight departures from normality. Wilcox recommends several procedures not readily available and beyond the scope of this text (bootstrap methods, trimmed means, medians, Stein’s method). Keep in mind, though, that the dependent \(t \) test is fairly robust to nonnormality in most situations.

Third, the nonparametric Wilcoxon signed ranks test is recommended when the data are nonnormal with extreme outliers (one or a few observations that behave quite differently from the rest). However, among the disadvantages of this test are that (a) the critical values are not extensively tabled and two different tables exist depending on sample size, and (b) tied ranks can affect the results and no optimal procedure has yet been developed (Wilcox, 1996). For these reasons, the details of the Wilcoxon signed ranks test are not described here. Note that most major statistical packages, including SPSS, include options for conducting the dependent \(t \) test and the Wilcoxon signed ranks test. Alternatively, one could conduct the Friedman nonparametric one-factor ANOVA, also based on ranked data, and which is appropriate for comparing two or more dependent sample means. This test is considered more fully in Chapter 15. These recommendations are summarized in Box 71.

7.4 SPSS

Instructions for determining the independent samples \(t \) test using SPSS are presented first. This is followed by additional steps for examining the assumption of normality for the independent \(t \) test. Next, instructions for determining the dependent samples \(t \) test using SPSS are presented and are then followed by additional steps for examining the assumptions of normality and homogeneity.

Independent \(t \) Test

Step 1: In order to conduct an independent \(t \) test, your dataset needs to include a dependent variable \(Y \) that is measured on an interval or ratio scale (e.g., cholesterol), as well as a grouping variable \(X \) that is measured on a nominal or ordinal scale (e.g., gender). For the grouping variable, if there are more than two categories available, only two categories can be selected when running the independent \(t \) test (the ANOVA is required for examining more than two categories). To conduct the independent \(t \) test, go to the “Analyze” in the top pulldown menu, then select “Compare Means,” and then select “Independent-Samples T Test.” Following the screenshot (step 1) as follows produces the ”Independent-Samples T Test” dialog box.
Step 2: Next, from the main “Independent-Samples T Test” dialog box, click the dependent variable (e.g., cholesterol) and move it into the “Test Variable” box by clicking on the arrow button. Next, click the grouping variable (e.g., gender) and move it into the “Grouping Variable” box by clicking on the arrow button. You will notice that there are two question marks next to the name of your grouping variable. This is SPSS letting you know that you need to define (numerically) which two categories of the grouping variable you want to include in your analysis. To do that, click on “Define Groups.”
Step 3: From the “Define Groups” dialog box, enter the numeric value designated for each of the two categories or groups of your independent variable. Where it says “Group 1,” type in the value designated for your first group (e.g., 1, which in our case indicated that the individual was a female), and where it says “Group 2,” type in the value designated for your second group (e.g., 2, in our example, a male) (see step 3 screenshot).

Click on “Continue” to return to the original dialog box (see step 2 screenshot) and then click on “OK” to run the analysis. The output is shown in Table 7.3.

Changing the alpha level (optional): The default alpha level in SPSS is .05, and thus, the default corresponding CI is 95%. If you wish to test your hypothesis at an alpha level other than .05 (and thus obtain CIs other than 95%), click on the “Options” button located in the top right corner of the main dialog box (see step 2 screenshot). From here, the CI percentage can be adjusted to correspond to the alpha level at which you wish your hypothesis to be tested (see Chapter 6 screenshot step 3). (For purposes of this example, the test has been generated using an alpha level of .05.)

Interpreting the output: The top table provides various descriptive statistics for each group, while the bottom box gives the results of the requested procedure. There you see the following three different inferential tests that are automatically provided: (1) Levene’s test of the homogeneity of variance assumption (the first two columns of results), (2) the independent t test (which SPSS calls “Equal variances assumed”) (the top row of the remaining columns of results), and (3) the Welch t’ test (which SPSS calls “Equal variances not assumed”) (the bottom row of the remaining columns of results).

The first interpretation that must be made is for Levene’s test of equal variances. The assumption of equal variances is met when Levene’s test is not statistically significant. We can determine statistical significance by reviewing the p value for the F test. In this example, the p value is .090, greater than our alpha level of .05 and thus not statistically significant. Levene’s test tells us that the variance for cholesterol level for males is not statistically significantly different than the variance for cholesterol level for females. Having met the assumption of equal variances, the values in the rest of the table will be drawn from the row labeled “Equal Variances Assumed.” Had we not met the assumption of equal variances (p < α), we would report Welch t’ for which the statistics are presented on the row labeled “Equal Variances Not Assumed.”

After determining that the variances are equal, the next step is to examine the results of the independent t test. The t test statistic value is −2.4842, and the associated p value is .023. Since p is less than α, we reject the null hypothesis. There is evidence to suggest that the mean cholesterol level for males is different than the mean cholesterol level for females.
Inferences About the Difference Between Two Means

TABLE 7.3
SPSS Results for Independent t Test

<table>
<thead>
<tr>
<th>Gender</th>
<th>N</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>8</td>
<td>185.0000</td>
<td>19.08627</td>
<td>6.74802</td>
</tr>
<tr>
<td>Male</td>
<td>12</td>
<td>215.0000</td>
<td>30.22642</td>
<td>8.72562</td>
</tr>
</tbody>
</table>

The table labeled “Group Statistics” provides basic descriptive statistics for the dependent variable by group.

The F test (and p value) of Levene’s Test for Equality of Variances is reviewed to determine if the equal variances assumption has been met. The result of this test determines which row of statistics to utilize. In this case, we meet the assumption and use the statistics reported in the top row.

“Sig.” is the observed p value for the independent t test. It is interpreted as: there is less than a 3% probability of a sample mean difference of -30 or greater occurring by chance if the null hypothesis is really true (i.e., if the population mean difference is 0).

SPSS reports the 95% confidence interval of the difference. This is interpreted to mean that 95% of the CIs generated across samples will contain the true population mean difference of 0.

The mean difference is simply the difference between the sample mean cholesterol values. In other words, $185 - 215 = -30$

The standard error of the mean difference is calculated as:

$$s_{\bar{Y}_1 - \bar{Y}_2} = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

t is the t test statistic value. The t value in the top row is used when the assumption of equal variances has been met and is calculated as:

$$t = \frac{\bar{Y}_1 - \bar{Y}_2}{s_{\bar{Y}_1 - \bar{Y}_2}} = \frac{185 - 215}{12.075} = -2.484$$

The t value in the bottom row is the Welch t and is used when the assumption of equal variances has not been met.

df are the degrees of freedom. For the independent samples t test, they are calculated as $n_1 + n_2 - 2$.
Using “Explore” to Examine Normality of Distribution of Dependent Variable by Categories of Independent Variable

Generating normality evidence: As alluded to earlier in the chapter, understanding the distributional shape, specifically the extent to which normality is a reasonable assumption, is important. For the independent t test, the distributional shape for the dependent variable should be normally distributed for each category/group of the independent variable. As with our one-sample t test, we can again use “Explore” to examine the extent to which the assumption of normality is met.

The general steps for accessing “Explore” have been presented in previous chapters (e.g., Chapter 4), and they will not be reiterated here. Normality of the dependent variable must be examined for each category of the independent variable, so we must tell SPSS to split the examination of normality by group. Click the dependent variable (e.g., cholesterol) and move it into the “Dependent List” box by clicking on the arrow button. Next, click the grouping variable (e.g., gender) and move it into the “Factor List” box by clicking on the arrow button. The procedures for selecting normality statistics were presented in Chapter 6, and they remain the same here: click on “Plots” in the upper right corner. Place a checkmark in the boxes for “Normality plots with tests” and also for “Histogram.” Then click “Continue” to return to the main “Explore” dialog screen. From there, click “OK” to generate the output.

Interpreting normality evidence: We have already developed a good understanding of how to interpret some forms of evidence of normality including skewness
and kurtosis, histograms, and boxplots. As we examine the “Descriptives” table, we see the output for the cholesterol statistics is separated for male (top portion) and female (bottom portion).

<table>
<thead>
<tr>
<th>Gender</th>
<th>Cholesterol level</th>
<th>Statistic</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Mean</td>
<td>215.0000</td>
<td>8.72562</td>
</tr>
<tr>
<td></td>
<td>95% Confidence interval</td>
<td>195.7951</td>
<td>234.2049</td>
</tr>
<tr>
<td></td>
<td>Lower bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5% Trimmed mean</td>
<td>215.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>215.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>913.636</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. deviation</td>
<td>30.22642</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>170.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>260.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>90.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interquartile range</td>
<td>57.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>.000</td>
<td>.637</td>
</tr>
<tr>
<td></td>
<td>Kurtosis</td>
<td>−1.446</td>
<td>1.232</td>
</tr>
<tr>
<td>Female</td>
<td>Mean</td>
<td>185.0000</td>
<td>6.74802</td>
</tr>
<tr>
<td></td>
<td>95% Confidence interval</td>
<td>169.0435</td>
<td>200.9565</td>
</tr>
<tr>
<td></td>
<td>Lower bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper bound</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5% Trimmed mean</td>
<td>185.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>185.0000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variance</td>
<td>364.286</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Std. deviation</td>
<td>19.08627</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>160.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>210.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interquartile range</td>
<td>37.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skewness</td>
<td>.000</td>
<td>.752</td>
</tr>
<tr>
<td></td>
<td>Kurtosis</td>
<td>−1.790</td>
<td>1.481</td>
</tr>
</tbody>
</table>

The skewness statistic of cholesterol level for the males is .000 and kurtosis is −1.446—both within the range of an absolute value of 2.0, suggesting some evidence of normality of the dependent variable for males. Evidence of normality for the distributional shape of cholesterol level for females is also present: skewness = .000 and kurtosis = −1.790.

The histogram of cholesterol level for males is not exactly what most researchers would consider a classic normally shaped distribution. Although the histogram of cholesterol level for females is not presented here, it follows a similar distributional shape.
There are a few other statistics that can be used to gauge normality as well. Our formal test of normality, the Shapiro–Wilk test (SW) (Shapiro & Wilk, 1965), provides evidence of the extent to which our sample distribution is statistically different from a normal distribution. The output for the S–W test is presented in the following and suggests that our sample distribution for cholesterol level is not statistically significantly different than what would be expected from a normal distribution—and this is true for both males ($SW = .949$, $df = 12$, $p = .617$) and females ($SW = .931$, $df = 8$, $p = .525$).

![Histogram for group = Male](image)

<table>
<thead>
<tr>
<th>Cholesterol level</th>
<th>Kolmogorov–Smirnova</th>
<th>Shapiro–Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statistic</td>
<td>df</td>
</tr>
<tr>
<td>Male</td>
<td>.129</td>
<td>12</td>
</tr>
<tr>
<td>Female</td>
<td>.159</td>
<td>8</td>
</tr>
</tbody>
</table>

a Lilliefors significance correction

* This is a lower bound of the true significance.

Quantile–quantile (Q–Q) plots are also often examined to determine evidence of normality. Q–Q plots are graphs that plot quantiles of the theoretical normal distribution against quantiles of the sample distribution. Points that fall on or close to the diagonal line suggest evidence of normality. Similar to what we saw with the histogram, the Q–Q plot of cholesterol level for both males and females (although not shown here) suggests some nonnormality. Keep in mind that we have a relatively small sample size. Thus, interpreting the visual graphs (e.g., histograms and Q–Q plots) can be challenging, although we have plenty of other evidence for normality.
Inferences About the Difference Between Two Means

Consideration of the boxplots suggests a relatively normal distributional shape of cholesterol level for both males and females and no outliers.

Considering the forms of evidence we have examined, skewness and kurtosis statistics, the S–W test, and the boxplots, all suggest normality is a reasonable assumption. Although the histograms and Q–Q plots suggest some nonnormality, this is somewhat expected given the small sample size. Generally, we can be reasonably assured we have met the assumption of normality of the dependent variable for each group of the independent variable. Additionally, recall that when the assumption of normality is violated with the independent t test, the effects on Type I and Type II errors are minimal when using a two-tailed test, as we are conducting here (e.g., Glass, Peckham, & Sanders, 1972; Sawilowsky & Blair, 1992).
Dependent t Test

Step 1: To conduct a dependent \(t \) test, your dataset needs to include the two variables (i.e., for the paired samples) whose means you wish to compare (e.g., pretest and posttest). To conduct the dependent \(t \) test, go to the “Analyze” in the top pulldown menu, then select “Compare Means,” and then select “Paired-Samples T Test.” Following the screenshot (step 1) as follows produces the “Paired-Samples T Test” dialog box.

Step 2: Click both variables (e.g., pretest and posttest as variable 1 and variable 2, respectively) and move them into the “Paired Variables” box by clicking the arrow button. Both variables should now appear in the box as shown in screenshot step 2. Then click on “Ok” to run the analysis and generate the output.

The output appears in Table 7.4, where again the top box provides descriptive statistics, the middle box provides a bivariate correlation coefficient, and the bottom box gives the results of the dependent \(t \) test procedure.
TABLE 7.4
SPSS Results for Dependent t Test

The table labeled “Paired Samples Statistics” provides basic descriptive statistics for the paired samples.

Paired Samples Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>N</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair 1</td>
<td>Pretest</td>
<td>64.0000</td>
<td>10</td>
<td>4.21637</td>
</tr>
<tr>
<td></td>
<td>Posttest</td>
<td>59.0000</td>
<td>10</td>
<td>3.62093</td>
</tr>
</tbody>
</table>

The table labeled “Paired Samples Correlations” provides the Pearson Product Moment Correlation Coefficient value, a bivariate correlation coefficient, between the pretest and posttest values. In this example, there is a strong correlation ($r = .859$) and it is statistically significant ($p = .001$).

Paired Samples Correlations

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Correlation</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair 1</td>
<td>10</td>
<td>.859</td>
<td>.001</td>
</tr>
</tbody>
</table>

The values in this section of the table are calculated based on paired differences (i.e., the difference values between pretest and posttest scores).

Paired Samples Test

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>95% Confidence Interval of the Difference</th>
<th>t</th>
<th>df</th>
<th>Sig. (2-Tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair 1</td>
<td>Pretest-posttest</td>
<td>5.00000</td>
<td>2.16025</td>
<td>.68313</td>
<td>3.45465 - 6.54535</td>
<td>7.319</td>
<td>9</td>
</tr>
</tbody>
</table>

“t” is the t test statistic value. The t value is calculated as:

$$t = \frac{d}{s_d} = \frac{5}{0.6831} = 7.3196$$

df are the degrees of freedom. For the dependent samples t test, they are calculated as $n - 1$.

“$Sig.$” is the observed p value for the dependent t test. It is interpreted as: there is less than a 1% probability of a sample mean difference of 5 or greater occurring by chance if the null hypothesis is really true (i.e., if the population mean difference is 0).
Using “Explore” to Examine Normality of Distribution of Difference Scores

Generating normality evidence: As with the other t tests we have studied, understanding the distributional shape and the extent to which normality is a reasonable assumption is important. For the dependent t test, the distributional shape for the difference scores should be normally distributed. Thus, we first need to create a new variable in our dataset to reflect the difference scores (in this case, the difference between the pre- and posttest values). To do this, go to “Transform” in the top pulldown menu, then select “Compute Variable.” Following the screenshot (step 1) as follows produces the “Compute Variable” dialog box.

From the “Compute Variable” dialog screen, we can define the column header for our variable by typing in a name in the “Target Variable” box (no spaces, no special characters, and cannot begin with a numeric value). The formula for computing our difference score is inserted in the “Numeric Expression” box. To create this formula, (1) click on “pretest” in the left list of variables and use the arrow key to move it into the “Numeric Expression” box; (2) use your keyboard or the keyboard within the dialog box to insert a minus sign (i.e., dash) after “pretest” in the “Numeric Expression” box; (3) click on “posttest” in the left list of variables and use the arrow key to move it into the “Numeric Expression” box; and (4) click on “OK” to create the new difference score variable in your dataset.
We can again use “Explore” to examine the extent to which the assumption of normality is met for the distributional shape of our newly created difference score. The general steps for accessing “Explore” (see, e.g., Chapter 4) and for generating normality evidence for one variable (see Chapter 6) have been presented in previous chapters, and they will not be reiterated here.

Interpreting normality evidence: We have already developed a good understanding of how to interpret some forms of evidence of normality including skewness and kurtosis, histograms, and boxplots. The skewness statistic for the difference score is .248 and kurtosis is .050—both within the range of an absolute value of 2.0, suggesting one form of evidence of normality of the differences.

The histogram for the difference scores (not presented here) is not necessarily what most researchers would consider a normally shaped distribution. Our formal test of normality, the S–W (SW) test (Shapiro & Wilk, 1965), suggests that our sample distribution for differences is not statistically significantly different than what would be expected from a normal distribution (S–W = .956, df = 10, p = .734). Similar to what we saw with the histogram, the Q–Q plot of differences suggests some nonnormality in the tails (as the farthest points are not falling on the diagonal line). Keep in mind that we have a small sample size. Thus, interpreting the visual graphs (e.g., histograms and Q–Q plots) can be difficult. Examination of the boxplot suggests a relatively normal distributional shape. Considering the forms of evidence we have examined, skewness and kurtosis, the S–W test of normality, and boxplots, all suggest normality is a reasonable assumption. Although the histograms and Q–Q plots suggested some nonnormality, this is somewhat expected given the small sample size. Generally, we can be reasonably assured we have met the assumption of normality of the difference scores.

Generating evidence of homogeneity of variance of difference scores: Without conducting a formal test of equality of variances (as we do in Chapter 9), a rough benchmark for having met the assumption of homogeneity of variances when conducting
the dependent \(t \) test is that the ratio of the smallest to largest variance of the paired samples is no greater than 1:4. The variance can be computed easily by any number of procedures in SPSS (e.g., refer back to Chapter 3), and these steps will not be repeated here. For our paired samples, the variance of the pretest score is 17.778 and the variance of the posttest score is 13.111—well within the range of 1:4, suggesting that homogeneity of variances is reasonable.

7.5 G*Power

Using the results of the independent samples \(t \) test just conducted, let us use G*Power to compute the post hoc power of our test.

Post Hoc Power for the Independent \(t \) Test Using G*Power

The first thing that must be done when using G*Power for computing post hoc power is to select the correct test family. In our case, we conducted an independent samples \(t \) test; therefore, the default selection of “\(t \) tests” is the correct test family. Next, we need to select the appropriate statistical test. We use the arrow to toggle to “Means: Difference between two independent means (two groups).” The “Type of Power Analysis” desired then needs to be selected. To compute post hoc power, we need to select “Post hoc: Compute achieved power—given \(\alpha \), sample size, and effect size.”

The “Input Parameters” must then be specified. The first parameter is the selection of whether your test is one-tailed (i.e., directional) or two-tailed (i.e., nondirectional). In this example, we have a two-tailed test so we use the arrow to toggle to “Two.” The achieved or observed effect size was \(-1.1339\). The alpha level we tested at was .05, and the sample size for females was 8 and for males, 12. Once the parameters are specified, simply click on “Calculate” to generate the achieved power statistics.

The “Output Parameters” provide the relevant statistics given the input just specified. In this example, we were interested in determining post hoc power given a two-tailed test, with an observed effect size of \(-1.1339\), an alpha level of .05, and sample sizes of 8 (females) and 12 (males). Based on those criteria, the post hoc power was .65. In other words, with a sample size of 8 females and 12 males in our study, testing at an alpha level of .05 and observing a large effect of \(-1.1339\), then the power of our test was .65—the probability of rejecting the null hypothesis when it is really false will be 65%, which is only moderate power. Keep in mind that conducting power analysis a priori is recommended so that you avoid a situation where, post hoc, you find that the sample size was not sufficient to reach the desired power (given the observed effect size and alpha level). We were fortunate in this example in that we were still able to detect a statistically significant difference in cholesterol levels between males and females; however we will likely not always be that lucky.
Inferences About the Difference Between Two Means

Once the parameters are specified, click on “Calculate.”

The “Input Parameters” for computing post hoc power must be specified including:
1. One versus two tailed test;
2. Observed effect size d;
3. Alpha level; and
4. Sample size for each group of the independent variable.

Post Hoc Power for the Dependent t Test Using G*Power

Now, let us use G*Power to compute post hoc power for the dependent t test. First, the correct test family needs to be selected. In our case, we conducted a dependent samples t test; therefore, the default selection of “t tests” is the correct test family. Next, we need to select the appropriate statistical test. We use the arrow to toggle to “Means: Difference between two independent means (two groups)” The “Type of Power Analysis” desired then needs to be selected. To compute post hoc power, we need to select “Post hoc: Compute achieved power–given α, sample size, and effect size.”

The “Input Parameters” must then be specified. The first parameter is the selection of whether your test is one-tailed (i.e., directional) or two-tailed (i.e., nondirectional).
In this example, we have a two-tailed test, so we use the arrow to toggle to "Two." The achieved or observed effect size was 2.3146. The alpha level we tested at was .05, and the total sample size was 10. Once the parameters are specified, simply click on "Calculate" to generate the achieved power statistics.

The “Output Parameters” provide the relevant statistics given the input specified. In this example, we were interested in determining post hoc power given a two-tailed test, with an observed effect size of 2.3146, an alpha level of .05, and total sample size of 10. Based on those criteria, the post hoc power was .99. In other words, with a total sample size of 10, testing at an alpha level of .05 and observing a large effect of 2.3146, then the power of our test was over .99—the probability of rejecting the null hypothesis when it is really false will be greater than 99%, about the strongest power that can be achieved. Again, conducting power analysis a priori is recommended so that you avoid a situation where, post hoc, you find that the sample size was not sufficient to reach the desired power (given the observed effect size and alpha level).
7.6 Template and APA-Style Write-Up

Next we develop APA-style paragraphs describing the results for both examples. First is a paragraph describing the results of the independent \(t \) test for the cholesterol example, and this is followed by dependent \(t \) test for the swimming example.

Independent \(t \) Test

Recall that our graduate research assistant, Marie, was working with JoAnn, a local nurse practitioner, to assist in analyzing cholesterol levels. Her task was to assist JoAnn with writing her research question (**Is there a mean difference in cholesterol level between males and females?**) and generating the test of inference to answer her question. Marie suggested an independent samples \(t \) test as the test of inference. A template for writing a research question for an independent \(t \) test is presented as follows:

Is there a mean difference in [dependent variable] between [group 1 of the independent variable] and [group 2 of the independent variable]?

It may be helpful to preface the results of the independent samples \(t \) test with information on an examination of the extent to which the assumptions were met (recall there are three assumptions: normality, homogeneity of variances, and independence). This assists the reader in understanding that you were thorough in data screening prior to conducting the test of inference.

An independent samples \(t \) test was conducted to determine if the mean cholesterol level of males differed from females. The assumption of normality was tested and met for the distributional shape of the dependent variable (cholesterol level) for females. Review of the S-W test for normality (\(SW = .931, df = 8, p = .525 \)) and skewness (.000) and kurtosis (-1.790) statistics suggested that normality of cholesterol levels for females was a reasonable assumption. Similar results were found for male cholesterol levels. Review of the S-W test for normality (\(S-W = .949, df = 12, p = .617 \)) and skewness (.000) and kurtosis (-1.446) statistics suggested that normality of males cholesterol levels was a reasonable assumption. The boxplots suggested a relatively normal distributional shape (with no outliers) of cholesterol levels for both males and females. The Q-Q plots and histograms suggested some minor nonnormality for both male and female cholesterol levels. Due to the small sample, this was anticipated. Although normality indices generally suggest the assumption is met, even if there are slight departures from normality, the effects on Type I and Type II errors will be minimal given the use of a two-tailed test (e.g., Glass, Peckham, & Sanders, 1972; Sawilowsky & Blair, 1992). According to Levene's test, the homogeneity of variance assumption was satisfied (\(F = 3.2007, p = .090 \)). Because there was no random assignment of the individuals to gender, the assumption of independence was not met, creating a potential for an increased probability of a Type I or Type II error.
It is also desirable to include a measure of effect size. Recall our formula for computing
the effect size, \(d\), presented earlier in the chapter. Plugging in the values for our cholesterol
example, we find an effect size \(d\) of -1.1339, which is interpreted according to Cohen’s
(1988) guidelines as a large effect:

\[
d = \frac{\bar{Y}_1 - \bar{Y}_2}{s_p} = \frac{185 - 215}{26.4575} = -1.1339
\]

Remember that for the two-sample mean test, \(d\) indicates how many standard deviations
the mean of sample 1 is from the mean of sample 2. Thus, with an effect size of -1.1339,
there are nearly one and one-quarter standard deviation units between the mean choles-
terol levels of males as compared to females. The negative sign simply indicates that group
1 has the smaller mean (as it is the first value in the numerator of the formula; in our case,
the mean cholesterol level of females).

Here is an APA-style example paragraph of results for the cholesterol level data (remem-
ber that this will be prefaced by the paragraph reporting the extent to which the assump-
tions of the test were met).

As shown in Table 7.3, cholesterol data were gathered from samples of
12 males and 8 females, with a female sample mean of 185 (\(SD = 19.09\))
and a male sample mean of 215 (\(SD = 30.22\)). The independent t test indi-
cated that the cholesterol means were statistically significantly dif-
ferent for males and females (\(t = -2.4842, df = 18, p = .023\)). Thus, the
null hypothesis that the cholesterol means were the same by gender was
rejected at the .05 level of significance. The effect size \(d\) (calculated
using the pooled standard deviation) was -1.1339. Using Cohen’s (1988)
guidelines, this is interpreted as a large effect. The results provide
evidence to support the conclusion that males and females differ in
cholesterol levels, on average. More specifically, males were observed
to have larger cholesterol levels, on average, than females.

Parenthetically, notice that the results of the Welch \(t'\) test were the same as for the inde-
dependent \(t\) test (Welch \(t' = -2.7197\), rounded \(df = 18, p = .014\)). Thus, any deviation from
homogeneity of variance did not affect the results.

Dependent t Test

Marie, as you recall, was also working with Mark, a local swimming coach, to assist in analyzing
freestyle swimming time before and after swimmers participated in an intensive training
program. Marie suggested a research question (Is there a mean difference in swim time for the
50-meter freestyle event before participation in an intensive training program as compared to swim time
for the 50-meter freestyle event after participation in an intensive training program?) and assisted in
generating the test of inference (specifically the dependent \(t\) test) to answer her question. A
template for writing a research question for a dependent \(t\) test is presented as follows.

Is there a mean difference in [paired sample 1] as compared to
[paired sample 2]?
Inferences About the Difference Between Two Means

It may be helpful to preface the results of the dependent samples t test with information on the extent to which the assumptions were met (recall there are three assumptions: normality, homogeneity of variance, and independence). This assists the reader in understanding that you were thorough in data screening prior to conducting the test of inference.

A dependent samples t test was conducted to determine if there was a difference in the mean swim time for the 50 meter freestyle before participation in an intensive training program as compared to the mean swim time for the 50 meter freestyle after participation in an intensive training program. The assumption of normality was tested and met for the distributional shape of the paired differences. Review of the S-W test for normality (SW = .956, df = 10, p = .734) and skewness (.248) and kurtosis (.050) statistics suggested that normality of the paired differences was reasonable. The boxplot suggested a relatively normal distributional shape, and there were no outliers present. The Q-Q plot and histogram suggested minor nonnormality. Due to the small sample, this was anticipated. Homogeneity of variance was tested by reviewing the ratio of the raw score variances. The ratio of the smallest (posttest = 13.111) to largest (pretest = 17.778) variance was less than 1:4; therefore, there is evidence of the equal variance assumption. The boxplot suggested a reasonable distributional shape, and there were no outliers present. The Q-Q plot and histogram suggested minor nonnormality. Due to the small sample, this was anticipated. Homogeneity of variance was tested by reviewing the ratio of the raw score variances. The ratio of the smallest (posttest = 13.111) to largest (pretest = 17.778) variance was less than 1:4; therefore, there is evidence of the equal variance assumption. The individuals were not randomly selected; therefore, the assumption of independence was not met, creating a potential for an increased probability of a Type I or Type II error.

It is also important to include a measure of effect size. Recall our formula for computing the effect size, d, presented earlier in the chapter. Plugging in the values for our swimming example, we find an effect size d of 2.3146, which is interpreted according to Cohen’s (1988) guidelines as a large effect:

$$Cohen\ d = \frac{\bar{d}}{s_d} = \frac{5}{2.1602} = 2.3146$$

With an effect size of 2.3146, there are about two and a third standard deviation units between the pretraining mean swim time and the posttraining mean swim time.

Here is an APA-style example paragraph of results for the swimming data (remember that this will be prefaced by the paragraph reporting the extent to which the assumptions of the test were met).

From Table 7.4, we see that pretest and posttest data were collected from a sample of 10 swimmers, with a pretest mean of 64 seconds ($SD = 4.22$) and a posttest mean of 59 seconds ($SD = 3.62$). Thus, swimming times decreased from pretest to posttest. The dependent t test was conducted to determine if this difference was statistically significantly different from 0, and the results indicate that the pretest and posttest means were statistically different ($t = 7.319, df = 9, p < .001$). Thus, the null hypothesis that the freestyle swimming means were the same at both points in time was rejected at the .05 level of significance. The effect size d (calculated as the mean difference divided by the standard
deviation of the difference) was 2.3146. Using Cohen’s (1988) guidelines, this is interpreted as a large effect. The results provide evidence to support the conclusion that the mean 50 meter freestyle swimming time prior to intensive training is different than the mean 50 meter freestyle swimming time after intensive training.

7.7 Summary

In this chapter, we considered a second inferential testing situation, testing hypotheses about the difference between two means. Several inferential tests and new concepts were discussed. New concepts introduced were independent versus dependent samples, the sampling distribution of the difference between two means, the standard error of the difference between two means, and parametric versus nonparametric tests. We then moved on to describe the following three inferential tests for determining the difference between two independent means: the independent \(t \) test, the Welch \(t' \) test, and briefly the Mann–Whitney–Wilcoxon test. The following two tests for determining the difference between two dependent means were considered: the dependent \(t \) test and briefly the Wilcoxon signed ranks test. In addition, examples were presented for each of the \(t \) tests, and recommendations were made as to when each test is most appropriate. The chapter concluded with a look at SPSS and GPower (for post hoc power) as well as developing an APA-style write-up of results. At this point, you should have met the following objectives: (a) be able to understand the basic concepts underlying the inferential tests of two means, (b) be able to select the appropriate test, and (c) be able to determine and interpret the results from the appropriate test. In the next chapter, we discuss inferential tests involving proportions. Other inferential tests are covered in subsequent chapters.

Problems

Conceptual Problems

7.1 We test the following hypothesis:

\[H_0: \mu_1 - \mu_2 = 0 \]
\[H_1: \mu_1 - \mu_2 \neq 0 \]

The level of significance is .05 and \(H_0 \) is rejected. Assuming all assumptions are met and \(H_0 \) is true, the probability of committing a Type I error is which one of the following?

a. 0
b. 0.05
c. Between .05 and .95
d. 0.95
e. 1.00
7.2 When H_0 is true, the difference between two independent sample means is a function of which one of the following?
 a. Degrees of freedom
 b. The standard error
 c. The sampling distribution
 d. Sampling error

7.3 The denominator of the independent t test is known as the standard error of the difference between two means, and may be defined as which one of the following?
 a. The difference between the two group means
 b. The amount by which the difference between the two group means differs from the population mean
 c. The standard deviation of the sampling distribution of the difference between two means
 d. All of the above
 e. None of the above

7.4 In the independent t test, the homoscedasticity assumption states what?
 a. The two population means are equal.
 b. The two population variances are equal.
 c. The two sample means are equal.
 d. The two sample variances are equal.

7.5 Sampling error increases with larger samples. True or false?

7.6 At a given level of significance, it is possible that the significance test and the CI results will differ for the same dataset. True or false?

7.7 I assert that the critical value of t required for statistical significance is smaller (in absolute value or ignoring the sign) when using a directional rather than a nondirectional test. Am I correct?

7.8 If a 95% CI from an independent t test ranges from $-.13$ to $+1.67$, I assert that the null hypothesis would not be rejected at the .05 level of significance. Am I correct?

7.9 A group of 15 females was compared to a group of 25 males with respect to intelligence. To test if the sample sizes are significantly different, which of the following tests would you use?
 a. Independent t test
 b. Dependent t test
 c. z test
 d. None of the above

7.10 The mathematic ability of 10 preschool children was measured when they entered their first year of preschool and then again in the spring of their kindergarten year. To test for pre- to post-mean differences, which of the following tests would be used?
 a. Independent t test
 b. Dependent t test
 c. z test
 d. None of the above
7.11 A researcher collected data to answer the following research question: Are there mean differences in science test scores for middle school students who participate in school-sponsored athletics as compared to students who do not participate? Which of the following tests would be used to answer this question?

a. Independent t test
b. Dependent t test
c. z test
d. None of the above

7.12 The number of degrees of freedom for an independent t test with 15 females and 25 males is 40. True or false?

7.13 I assert that the critical value of t, for a test of two dependent means, will increase as the samples become larger. Am I correct?

7.14 Which of the following is NOT an assumption of the independent t test?

a. Normality
b. Independence
c. Equal sample sizes
d. Homogeneity of variance

7.15 For which of the following assumptions of the independent t test is evidence provided in the SPSS output by default?

a. Normality
b. Independence
c. Equal sample sizes
d. Homogeneity of variance

Computational Problems

7.1 The following two independent samples of older and younger adults were measured on an attitude toward violence test:

<table>
<thead>
<tr>
<th>Sample 1 (Older Adult) Data</th>
<th>Sample 1 (Younger Adult) Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 36 47</td>
<td>45 50 57</td>
</tr>
<tr>
<td>35 46 37</td>
<td>58 43 52</td>
</tr>
<tr>
<td>52 44 47</td>
<td>43 60 41</td>
</tr>
<tr>
<td>51 56 54</td>
<td>49 44 51</td>
</tr>
<tr>
<td>55 50 40</td>
<td>49 55 56</td>
</tr>
<tr>
<td>40 46 41</td>
<td></td>
</tr>
</tbody>
</table>

a. Test the following hypotheses at the .05 level of significance:

\[H_0: \mu_1 - \mu_2 = 0 \]

\[H_1: \mu_1 - \mu_2 \neq 0 \]

b. Construct a 95% CI.
7.2 The following two independent samples of male and female undergraduate students were measured on an English literature quiz:

<table>
<thead>
<tr>
<th>Sample 1 (Male) Data</th>
<th>Sample 1 (Female) Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 7 8</td>
<td>9 9 11</td>
</tr>
<tr>
<td>10 11 11</td>
<td>13 15 18</td>
</tr>
<tr>
<td>13 15</td>
<td>19 20</td>
</tr>
</tbody>
</table>

a. Test the following hypotheses at the .05 level of significance:

\[H_0: \mu_1 - \mu_2 = 0 \]

\[H_1: \mu_1 - \mu_2 \neq 0 \]

b. Construct a 95% CI.

7.3 The following two independent samples of preschool children (who were demographically similar but differed in Head Start participation) were measured on teacher-reported social skills during the spring of kindergarten:

<table>
<thead>
<tr>
<th>Sample 1 (Head Start) Data</th>
<th>Sample 1 (Non-Head Start) Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 14 12</td>
<td>15 12 9</td>
</tr>
<tr>
<td>16 10 17</td>
<td>10 18 12</td>
</tr>
<tr>
<td>20 16 19</td>
<td>11 8 11</td>
</tr>
<tr>
<td>15 13 22</td>
<td>13 10 14</td>
</tr>
</tbody>
</table>

a. Test the following hypothesis at the .05 level of significance:

\[H_0: \mu_1 - \mu_2 = 0 \]

\[H_1: \mu_1 - \mu_2 \neq 0 \]

b. Construct a 95% CI.
7.4 The following is a random sample of paired values of weight measured before (time 1) and after (time 2) a weight-reduction program:

<table>
<thead>
<tr>
<th>Pair</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>127</td>
<td>130</td>
</tr>
<tr>
<td>2</td>
<td>126</td>
<td>124</td>
</tr>
<tr>
<td>3</td>
<td>129</td>
<td>135</td>
</tr>
<tr>
<td>4</td>
<td>123</td>
<td>127</td>
</tr>
<tr>
<td>5</td>
<td>124</td>
<td>127</td>
</tr>
<tr>
<td>6</td>
<td>129</td>
<td>128</td>
</tr>
<tr>
<td>7</td>
<td>132</td>
<td>136</td>
</tr>
<tr>
<td>8</td>
<td>125</td>
<td>130</td>
</tr>
<tr>
<td>9</td>
<td>135</td>
<td>131</td>
</tr>
<tr>
<td>10</td>
<td>126</td>
<td>128</td>
</tr>
</tbody>
</table>

a. Test the following hypothesis at the .05 level of significance:

\[H_0: \mu_1 - \mu_2 = 0 \]

\[H_1: \mu_1 - \mu_2 \neq 0 \]

b. Construct a 95% CI.

7.5 Individuals were measured on the number of words spoken during the 1 minute prior to exposure to a confrontational situation. During the 1 minute after exposure, the individuals were again measured on the number of words spoken. The data are as follows:

<table>
<thead>
<tr>
<th>Person</th>
<th>Pre</th>
<th>Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>85</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>130</td>
<td>90</td>
</tr>
<tr>
<td>14</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>15</td>
<td>90</td>
<td>50</td>
</tr>
</tbody>
</table>

a. Test the following hypotheses at the .05 level of significance:

\[H_0: \mu_1 - \mu_2 = 0 \]

\[H_1: \mu_1 - \mu_2 \neq 0 \]

b. Construct a 95% CI.

7.6 The following is a random sample of scores on an attitude toward abortion scale for husband (sample 1) and wife (sample 2) pairs:

<table>
<thead>
<tr>
<th>Pair</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

a. Test the following hypotheses at the .05 level of significance:

\[H_0: \mu_1 - \mu_2 = 0 \]
\[H_1: \mu_1 - \mu_2 \neq 0 \]

b. Construct a 95% CI.

7.7 For two dependent samples, test the following hypothesis at the .05 level of significance:

Sample statistics: \(n = 121; d = 10; s_d = 45 \).

\[H_0: \mu_1 - \mu_2 = 0 \]
\[H_1: \mu_1 - \mu_2 > 0 \]

7.8 For two dependent samples, test the following hypothesis at the .05 level of significance.

Sample statistics: \(n = 25; d = 25; s_d = 14 \).

\[H_0: \mu_1 - \mu_2 = 0 \]
\[H_1: \mu_1 - \mu_2 > 0 \]

Interpretive Problems

7.1 Using the survey 1 dataset from the website, use SPSS to conduct an independent \(t \) test, where gender is the grouping variable and the dependent variable is a variable of interest to you. Test for the extent to which the assumptions have been met. Calculate an effect size as well as post hoc power. Then write an APA-style paragraph describing the results.

7.2 Using the survey 1 dataset from the website, use SPSS to conduct an independent \(t \) test, where the grouping variable is whether or not the person could tell the difference between Pepsi and Coke and the dependent variable is a variable of interest to you. Test for the extent to which the assumptions have been met. Calculate an effect size as well as post hoc power. Then write an APA-style paragraph describing the results.