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Preface

Like the previous editions, this third edition of Research Design and Statistical Analysis is intended
as a resource for researchers and a textbook for graduate and advanced undergraduate students.
The guiding philosophy of the book is to provide a strong conceptual foundation so that readers are
able to generalize concepts to new situations they will encounter in their research, including new
developments in data analysis and more advanced methods that are beyond the scope of this
book. Toward this end, we continue to emphasize basic concepts such as sampling distributions,
design efficiency, and expected mean squares, and we relate the research designs and data analyses
to the statistical models that underlie the analyses. We discuss the advantages and disadvantages
of various designs and analyses. We pay particular attention to the assumptions involved, the
consequences of violating the assumptions, and alternative analyses in the event that assumptions
are seriously violated.

As in previous editions, an important goal is to provide coverage that is broad and deep enough
so that the book can serve as a textbook for a two-semester sequence. Such sequences are common;
typically, one semester focuses on experimental design and the analysis of data from such experi-
ments, and the other semester focuses on observational studies and regression analyses of the data.
Incorporating the analyses of both experimental and observational data within a single textbook
provides continuity of concepts and notation in the typical two-semester sequence and facilitates
developing relationships between analysis of variance and regression analysis. At the same time, it
provides a resource that should be helpful to researchers in many different areas, whether analyzing
experimental or observational data.

CONTENT OVERVIEW

Also like the previous editions, this edition can be viewed as consisting of four parts:

1. Data exploration and basic concepts such as sampling distributions, elementary prob-
ability, principles of hypothesis testing, measures of effect size, properties of estimators,
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and confidence intervals on both differences among means and on standardized effect
sizes.

2. Between-subject designs; these are designs with one or more factors in which each
subject provides a single score. Key elements in the coverage are the statistical models
underlying the analysis of variance for these designs, the role of expected mean squares in
justifying hypothesis tests and in estimating effects of variables, the interpretation of inter-
actions, procedures for testing contrasts and for controlling Type 1 error rates for such
tests, and trend analysis—the analysis and comparison of functions of quantitative
variables.

3. Extension of these analyses to repeated-measures designs; these are designs in which sub-
jects contribute several scores. We discuss nesting and counterbalancing of variables in
research designs, present quasi-F ratios that provide approximate tests of hypotheses, and
consider the advantages and disadvantages of different repeated-measures and mixed
designs.

4. The fourth section provides a comprehensive introduction to correlation and regression,
with the goal of developing a general framework for analysis that incorporates both
categorical and quantitative variables. The basic ideas of regression are developed first for
one predictor, and then extended to multiple regression. The expanded section on multiple
regression discusses both its usefulness as a tool for prediction and its role in developing
explanatory models. Throughout, there is an emphasis on interpretation and on identifying
common errors in interpretation and usage.

NEW TO THIS EDITION

Although the third edition shares the overall goals of the previous editions, there are many modifi-
cations and additions. These include: (1) revisions of all of the chapters from the second edition; (2)
seven new chapters; (3) more examples of the use of SPSS to conduct statistical analyses; (4) added
emphasis on power analyses to determine sample size, with examples of the use of G*Power (Faul,
Erdfelder, Lang, & Buchner, 2007) to do this; and (5) new exercises. In addition to the modifications
of the text, there is a substantial amount of additional material at the website, www.psypress.com/
research-design. The website contains the following: (1) SPSS syntax files to perform analyses from
a wide range of designs and a hotlink to the G*Power program; (2) all of the data files used in the
text and in the exercises in SPSS and Excel formats; (3) technical notes containing derivations of
some formulas presented in the book; (4) extra material on multiple and on logistic regression; and
(5) a solutions manual and the text’s figures and tables for instructors only.

Additional chapters
There are seven new chapters in the book. Chapters 1, 13, and 27 were added to provide more
emphasis on the connections between design decisions, statistical analyses, and the interpretation of
results from a study. In addition, a chapter has been added at the end of each of the four sections
noted above to provide integrated examples of applications of the principles and procedures
covered in the sections.

Planning the Research. The first chapter provides a schema for thinking about the major
steps involved in planning a study, executing it, and analyzing and interpreting the results. The
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emphasis is on the implications of decisions made in the planning study for subsequent analyses
and interpretation of results. The chapter establishes a critical theme for the rest of the book;
namely, that design and statistical analyses go hand-in-hand.

Comparing Experimental Designs. Chapter 13, the first chapter in the third section on
repeated-measures, provides a bridge between the second and third sections. It introduces blocking
in research designs, the analysis of covariance, and repeated-measures and Latin square designs.
Advantages and disadvantages of these designs and analyses are discussed. In addition, the import-
ant concept of the relative efficiency of designs is introduced, and illustrated with data and the
results of computer sampling studies. This chapter reinforces the theme of the intimate connection
between design and statistical analysis.

Review of Important Points and Cautions About Common Errors. Chapter 27 is
intended to remind readers of points discussed in the book—points we believe to be important but
sometimes overlooked—and to warn against common errors in analyzing and interpreting results.
For example, the chapter reminds readers of the importance of carefully choosing a research design
and the need for a priori power calculations. As another example, the chapter again emphasizes the
distinction between statistical and practical, or theoretical, significance.

Integrated Analysis Chapters.  Each chapter in the book covers a lot of conceptual and
procedural territory, so the integrated analysis chapters provide opportunities to see how the con-
cepts and analyses come together in the context of a research problem. In these chapters, we
consider the design of a study and the analysis of the resulting data. The presentation includes
discussion of the pros and cons of possible alternative designs, and takes the analysis through
exploration of the data to inferential procedures such as hypothesis tests, including, where
applicable, tests of contrasts, estimates of effect size, and alternatives to the standard analyses in
consideration of possible violations of assumptions. These chapters also serve as a review of the
preceding chapters in the section and, in some cases, are used to introduce additional methods.

Use of Statistical Software
We assume that most readers will have access to some statistical software package. Although we
have used SPSS for most of our examples, the analyses we illustrate are available in most packages.
At several points, we have indicated the relevant SPSS menu options and dialog box choices needed
to carry out an analysis. In cases where certain analyses are not readily available in the menus of
current versions of SPSS (and possibly other statistical packages), we have provided references
to Internet sites that permit free, or inexpensive, downloads of relevant software; for example,
programs for obtaining confidence intervals for various effect size measures. Also, although their
use is not required in the book, we have provided a number of SPSS syntax files available at the
book’s website (see below) that can be used to perform analyses for a wide range of designs. We note
that the syntax files were written using SPSS 17 and that the analyses reported in the book are also
based on that version. Future versions may provide slightly different output, other options for
analysis, or somewhat different syntax.

We have used G*Power 3 for power analyses in many of the chapters and in some exercises.
This very versatile software provides both a priori and post hoc analyses for many designs
and analyses, as well as figures showing the central and noncentral distributions for the test and
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parameters under consideration. The software and its use are described by Faul, Erdfelder, Lang,
and Buchner (2007). G*Power 3 can be freely downloaded from the website (http://www.psycho.
uni-duesseldorf.de/abteilungen/aap/gpower3/). Readers should register there in order to download
the software and to be notified of any further updates. Description of the use of G*Power 3 and
illustrations in the current book are based on Version 3.0.9. An excellent discussion of the use of
that program has been written by Faul, Erdfelder, Lang, and Buchner (2007).

Exercises
As in previous editions, each chapter ends with a set of exercises. Answers to odd-numbered
exercises are provided at the back of the book; all answers are available in the password-protected
Instructor’s Solution Manual available at the book’s website. There are more than 40 exercises
in the four new integrated-analysis chapters to serve as a further review of the material in the
preceding chapters.

The Book Website
For the third edition, a variety of materials are available on the website, www.psypress.com/
research-design. These include the following.

Data Files
A number of data sets can be accessed from the book’s website. These include data sets used
in analyses presented in the chapters, so that these analyses can be re-created. Also, there are
additional data sets used in the exercises. All data files are available both in SPSS and Excel format,
in order to make them easily accessible. Some of these data sets have been included in order to
provide instructors with an additional source of classroom illustrations and exercises. For example,
we may have used one of the tables in the book to illustrate analysis of variance, but the file can also
be used to illustrate tests of contrasts that could follow the omnibus analysis. A listing of the data
files and descriptions of them are available on the website.

SPSS Syntax Files
As mentioned above, a number of optional syntax files are provided on the website that can be used
to perform analyses for a wide range of designs. These include analyses involving nesting of vari-
ables having random effects; tests involving a variety of contrasts, including comparisons of con-
trasts and of trend components; and a varied set of regression analyses. These files, together with a
Readme Syntax file that describes their use, are available at the website.

Technical Notes
For the sake of completeness, we wanted to present derivations for some of the expressions used in
the book—for example, standard errors of regression coefficients. Because these derivations are not
necessary to understand the chapters, and may be intimidating to some readers, we have made them
available as optional technical notes on the website.

xviii PREFACE

http://www.researchmethodsarena.com/research-design-and-statistical-analysis-9780805864311

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
http://www.psypress.com/
http://www.researchmethodsarena.com/research-design-and-statistical-analysis-9780805864311


Additional Chapters
Here we present two supplementary chapters in pdf format that go beyond the scope of the book.
One is a brief introduction to regression analysis using matrix algebra. The other is an introduction
to logistic regression that is more comprehensive than the brief section that we included in Chapter
23. Other material will be added at various times.

Teaching Tools
There is information on the website for instructors only. Specifically, there is a solutions manual for
all the exercises in the book and electronic files of the figures in the book.

Errata
Despite our best intentions, some errors may have crept into the book. We will maintain an up-to-
date listing of corrections.
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Chapter 8
Between-Subjects Designs:
One Factor

8.1 OVERVIEW

In Chapter 8, we consider a basic research design in which there is a single independent variable
with several levels that make up the conditions of the study, no subject is tested in more than one
condition, and each subject contributes one score to the data set. Like any experimental design, the
one-factor, between-subjects design has advantages and disadvantages.

The primary advantage of the design is that it is simple in several respects. First, data collection
is simple. Only one observation is taken from each subject. No additional measures are required for
the purpose of matching subjects in different conditions. Nor is there a need to be concerned about
the order of presentation of treatments, or the interval between tests, as in designs in which subjects
are tested in several conditions. Second, there are fewer assumptions underlying the data analysis
than in most other research designs. More complex designs involve additional assumptions that, if
violated, increase the likelihood of drawing incorrect conclusions from our data. Finally, there are
fewer calculations than in other designs, and decisions about how to draw inferences based on those
calculations are less complicated.

One disadvantage of the between-subjects design is that it requires more subjects than designs
in which subjects are tested in several conditions. A second disadvantage is that there is less control
of nuisance variables, and therefore the error variance is larger than in other designs. In particular,
because subjects in different conditions differ in characteristics such as ability and motivation, it is
more difficult to assess the effects of conditions than in designs in which such individual differences
are better controlled.

In between-subjects designs, subjects may either be sampled from existing populations, or be
assigned randomly to one of several experimental conditions, or treatment levels. An example of
the former is the Seasons study1 in which individuals were sampled from populations differing with
respect to various factors, including gender, educational level, and occupation. Strictly speaking,

1 See the Seasons data set on the website for this book.
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that study would be classified as an observational study. True experiments involve random assign-
ment of subjects to levels of an independent variable; the independent variable is said to be
manipulated and the design is often referred to as completely randomized. Whether the levels of the
independent variable are observed or manipulated, the data analysis has much the same form and
the underlying assumptions are the same.

We view each group of scores as a random sample from a treatment population. The first
question of interest is whether the means of these treatment populations vary. To address this
question, we introduce the analysis of variance, or ANOVA, in which the total variability in the data
set is partitioned into two components, one reflecting the variance of the treatment population
means, and a second that reflects only the effects of nuisance variables.

In addition to testing whether the treatment population means are equal, we want some way of
evaluating the practical or theoretical importance of the independent variable. Therefore, following
the development of the ANOVA, we focus on several measures of importance. We also consider the
role of statistical power in the research design and relate power to measures of importance.

Throughout this chapter, we will have made certain assumptions to justify the calculations
presented. When those assumptions are violated, Type 1 and Type 2 error rates may increase.
Therefore, the chapter also discusses such consequences, and alternative procedures that may
improve the situation.

In summary, the main concerns of this chapter are:

• Testing the null hypothesis that the treatment population means are equal. This involves the
ANOVA for the one-factor between-subjects design.

• Measures of the importance of the independent variable. These are derived from the ANOVA
table.

• The power of the test of the null hypothesis and the relationship between power and the
decision about sample size.

• The assumptions underlying the ANOVA, measures of importance, and power of the signifi-
cance test, including the consequences of violations of assumptions and alternative
methods that can be used in the face of violations.

8.2 AN EXAMPLE OF THE DESIGN

An example of an experiment, together with a data set, will make subsequent developments more
concrete. Table 8.1 presents data from a hypothetical memory study in which 40 subjects were
randomly divided into four groups of 10 each. Each subject studied a list of 20 words and was
tested for recall a day later. Ten subjects were taught and instructed to use a memory strategy called
the method of loci, in which each object on the list was associated with a location on campus; 10
subjects were told to form an image of each object on the list; 10 others were told to form a rhyme
with each word; and 10 others—the control group—were just told to study the words.2

Fig. 8.1 presents the group means and 95% confidence intervals for those means. The three
groups that were instructed to use a memory strategy had higher average recall scores than the
control group, although the widths of the confidence intervals indicate that the data were quite
variable. There is also some indication that the method of loci may be superior to the other two

2 The data are also in a file labeled Table 8_1 Memory Data; a link is on the Tables page on the website for this book.
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experimental methods. However, differences among the four means may just reflect differences in
the effects of nuisance variables. By chance, the average ability or motivational level in one group of
students may be higher than in the others; or other differences between individuals or between the
conditions in which they were tested (e.g., the time of day, the temperature in the room) may
account for the apparent differences among experimental conditions. A major goal of the data
analysis is to separate out the effects of the instructional method from the effects of nuisance
variables.

At this point, it would be wise to explore the data further, calculating additional statistics and
plotting other graphs as described in Chapter 2. However, we will leave that as an exercise for the
reader and proceed to address the question of whether the differences in Fig. 8.1 reflect true
differences in the effects of the four study methods, or merely error variance. We begin by developing
a framework for the analysis of variance.

Fig. 8.1 Means and confidence interval bars for the data of Table 8.1.

Table 8.1 Recall scores from a hypothetical memory study

Control Loci Image Rhyme

11 10 13 16
4 18 16 9
8 6 3 7
3 20 6 10

11 15 13 9
8 9 10 14
2 8 13 16
5 11 9 3
8 12 5 9
5 12 19 12

Ȳ̄.j = 6.5 12.1 10.7 10.5 Ȳ̄.j = 9.95

s2
j = 10.056 19.433 25.567 16.722
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8.3 THE STRUCTURAL MODEL

We view the various groups of scores in a study as random samples from populations selected for
investigation. Then the question of whether the four study methods of Table 8.1 differ in their
effectiveness can be rephrased as: Do the means of the four treatment populations differ? To answer
this question, we need a way of linking the observed data to the hypothetical populations, of
relating sample statistics to population parameters. We begin by constructing a structural model, a
model that relates the scores to population parameters.

We start by assuming that the subjects in the experiment are identical in ability, motivation, and
any other characteristics that would affect their scores. We further assume that they are identically
treated—e.g., tested at the same moment in time, and under the exact same conditions. Under these
very unrealistic assumptions, everyone in an instructional population, and therefore everyone in an
instructional group, would have the same score; that score would be the treatment population mean.
We can represent this state of affairs with the following notation:

Y11 = Y21 = Y31 = . . . = Yi1 = . . . = Yn1 = µ1

Y12 = Y22 = Y32 = . . . = Yi2 = . . . = Yn2 = µ2

Y13 = Y23 = Y33 = . . . = Yi3 = . . . = Yn3 = µ3

where there are n subjects in a group, Yij represents the i th score in the j th group, and µj is the mean
of the jth population of scores. For example, Y52 would refer to the score of the fifth subject in the
second group.

Of course, this is not realistic; the scores of individuals in an instructional group will vary, and
therefore will differ from the instructional population mean, because of nuisance variables such as
ability level, prior relevant experience, interest in the topic, or conditions at the time of testing. We
can represent this complication by saying that the score of the i th subject in the j th group will differ
from the treatment population mean, µ j, by some amount—an error component, εij. This means that
an individual’s score equals the mean of the treatment population plus an error component. That is,

Yij = µj + (Yij − µj)

= µj + εij (8.1)

Note that εij can be positive or negative; that is, nuisance variables can raise the score above the
population mean, or lower it below that mean.

We can rewrite Equation 8.1 in a way that more directly expresses the relation between a score
and the effect of the condition under which that score was obtained. First, we define one more
population parameter, µ, the mean of all the treatment populations; i.e., µ = Σµj /a, where a is the
number of levels of the independent variable. Equation 8.1 is unchanged if we add and subtract µ
from the right side:

Yij = µ + (µj − µ) + εij (8.2)

Let αj = (µj − µ); because αj (Greek alpha) is the difference between the mean of the j th treatment
population and the grand mean of all the populations, it represents the effect of the j th treatment on
the scores in the j th population. Therefore, we can rewrite Equation 8.2:

Yij = µ + αj + εij (8.3)

Equation 8.3 is a structural equation; it defines the structure of a score obtained in a one-factor
between-subjects experiment. In words, the structure of a score is
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score = grand mean + treatment effect + error component

The parameters in Equation 8.3 are rather abstract and not very useful unless we tie them to
statistics that we can calculate from our data. To do this, we need to estimate the population means,
the treatment effects, and the errors. We have the following parameter estimates:3

where Yij is the score of the i th person in the j th group, Ȳ̄.j is the mean of all the scores in the j th

group, and Ȳ̄. . is the mean of all the scores in the data set. For example, in Table 8.1, Y23 is 16, the
score of the second person in the image condition; Ȳ̄.4 is 10.5, the mean of the rhyme condition; and
Ȳ̄. . is 9.95, the grand mean.

With the structural equation as a basis, we now can begin to calculate the terms we need in
order to draw inferences from our data.

8.4 THE ANALYSIS OF VARIANCE (ANOVA)

The ANOVA involves partitioning the variability of all the scores into two components, or sums of
squares. These in turn are divided by their degrees of freedom to form mean squares, estimates of
population variances. The ratio of mean squares, the F ratio, provides a test of the hypothesis that
all the treatments have the same effect. In what follows, we consider each of these aspects of the
ANOVA.

8.4.1 Sums of Squares
As Equation 8.3 implies, scores can vary because of the effects of the independent variable and
because of the effects of uncontrolled nuisance variables. If we can separate those two sources of
variance in our data, we will have the basis for deciding how much, if any, of the variance is due to
the independent variable.

The structural equation suggests an approach to partitioning variability. If we rewrite Equation
8.3 by subtracting µ from both sides, we can express the deviation of a score from the grand mean of
the population as consisting of a treatment effect and error; that is,

Yij − µ = αj + εij

Replacing the parameters in the preceding equation by the estimates we presented earlier, we have

Yij − Ȳ̄. . = (Ȳ̄.j − Ȳ̄. .) + (Yij− Ȳ̄.j) (8.4)

The next step in partitioning the total variability is to calculate the terms in Equation 8.4, and
then square and sum them. The results are the sums of squares. For the data set of Table 8.1, the left
side of Equation 8.4 leads to the total sum of squares:

SStotal = �
4

j = 1
�

10

i = 1

(Yij − Ȳ̄. .)
2 = (11 − 9.95)2 + . . . + (12 − 9.95)2 = 819.9

Parameter µ µj αj εij

Estimate Ȳ̄. . Ȳ̄.j Ȳ̄.j − Ȳ̄. . Yij − Ȳ̄.j

3 These are least-squares estimators; that is, we can show that if these statistics are calculated for many samples, their
variance about the parameter being estimated is less than that for any other estimator.
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The first term to the right of the equal sign in Equation 8.4 is also squared and summed for each
individual, yielding the method sum of squares:

SSmethod = 10 �
4

j = 1

(Ȳ̄.j − Ȳ̄. .)
2 = 10[(6.5 − 9.995)2 + . . . + (10.5 − 9.95)2] = 173.9

and finally we obtain the residual sum of squares which can be calculated either directly as

SSresidual = �
4

j = 1
�

10

i = 1

(Yij − Ȳ̄.j)
2 = (11 − 6.5)2 + . . . + (12 − 10.5)2 = 646.0

or as the difference between the total and method sum of squares:

SSresidual = SStotal − SSmethod = 819.9 − 173.9 = 646.0

The preceding results are based on the example of Table 8.1. In general, we designate the
independent variable by the letter A, and we assume a levels of A with n scores at each level. Then,

�
a

j = 1
�

n

i = 1

(Yij − Ȳ̄. .)
2 = n �

a

j = 1

(Ȳ̄.j − Ȳ̄. .)
2 + �

a

j = 1
�

n

i = 1

(Yij − Ȳ̄.j)
2 (8.5)

SStotal = SSA + SSS/A

where S/A represents “subjects within levels of A” to remind us that the residual term reflects the
variability of the scores within each level of A. A general proof that SStotal = SSA + SSS/A is pre-
sented in Appendix 8.1.

8.4.2 Degrees of Freedom (df )
The three terms in Equation 8.5 are numerators of variances and, as such, must be divided by their
corresponding degrees of freedom (df ) in order to be converted into variances, or mean squares. The
df associated with a particular SS term is the number of independent observations contributing to
that estimate of variability. For our three SS terms, we have the following df:

1. The total degrees of freedom, dftotal. The total sum of squares, SStotal, is the numerator of the
variance of all an scores. Therefore, dftotal = an − 1.

2. The between-groups degrees of freedom, dfA, scores. The between-groups sum of squares,
SSA, is n times the numerator of the variance of the a group means about the grand mean
and is therefore distributed on a − 1 df.

3. The within-groups degrees of freedom, dfS/A. The within-groups sum of squares, SSS/A, is the
sum, or “pool” of the numerators of each of the group variances. Because each of the a
group variances is distributed on n − 1 df, SSS/A is distributed on a(n − 1) df. Note that

an − 1 = a(n − 1) + (a − 1)

dftot = dfS/A + dfA (8.6)

Equation 8.6 demonstrates that the degrees of freedom are partitioned into two parts that corres-
pond to the sums of squares. This partitioning of the degrees of freedom provides a partial check
on the partitioning of the total variability. Although the partitioning in a one-factor design is
simple, keeping track of the number of distinguishable sources of variance can be difficult in more
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complex designs. There are also designs in which it is a challenge to analyze the relations among the
factors in the design. Therefore, when designs have many factors, it is wise to find the degrees of
freedom associated with each source of variability and to check whether the df sum to the total
number of scores minus one.

8.4.3 Mean Squares, Expected Mean Squares, and the F Ratio
The ratio of a sum of squares to degrees of freedom is called a mean square. In the one-factor
design, the relevant mean squares are the A mean square, where

MSA = SSA/dfA

and the S/A mean square,

MSS/A = SSS/A/dfS/A

Under the assumptions summarized in Box 8.1, the ratio MSA/MSS/A has a sampling distribution

Box 8.1 Parameter Definitions and Assumptions

1. The parent population mean, µ. This is the grand mean of the treatment populations selected for
this study and is a constant component of all scores in the a populations. It is the average of the
treatment population means:

µ = �
a

j = 1

µj/a

2. The effect of treatment Aj, αj. This equals µj − µ and is a constant component of all scores
obtained under Aj but may vary over treatments (levels of j).
2.1 Because the deviation of all scores about their mean is zero, Σjαj = 0.
2.2 If the null hypothesis is true, all αj = 0.

2.3 The population variance of the treatment effects is σ2
A = �

a

j = 1

α2
j /a.

3. The error, εij. This is the deviation of the i th score in group j from µj and reflects uncontrolled, or
chance, variability. It is the only source of variation within the j th group, and if the null hypothesis
is true, the only source of variation within the data set. We assume that
3.1 The εij are independently distributed; i.e., the probability of sampling some value of εij does

not depend on other values of εij in the sample.
3.2 The εij are normally distributed in each of the a treatment populations. Also, because

εij = Yij − µj, the mean of each population of errors is zero; i.e., E(εij) = 0.
3.3 The distribution of the εij has variance σ2

e (error variance) in each of the a treatment popula-
tions; i.e., σ2

1 = . . . = σ2
j = . . . = σ2

a. This is the assumption of homogeneity of variance. The
error variance is the average squared error; σ2

e = E(ε2
ij ).

called the F distribution if the null hypothesis is true. It provides a test of the null hypothesis that the
treatment population means are all equal; that is, the F statistic tests the null hypothesis:

H0:µ1 = µ2 = . . . = µj = . . . = µa = µ
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or, equivalently,
H0: α1 = α2 = . . . = αj = . . . αa = 0

To understand the logic of the F test, we need to consider the relationship of the mean squares to
the population variances. This requires us to determine the expected values of our two mean square
calculations.

Suppose we draw a samples of n scores from their respective treatment populations, and
calculate MSA and MSS/A. Now suppose that we draw another a samples of n scores, and again
calculate MSA and MSS/A. We could repeat this sampling experiment many times and generate two
sampling distributions, one for MSA and another for MSS/A. The means of these two sampling
distributions are the expected values of the mean squares, or the expected mean squares (EMS ).
Given the structural model of Equation 8.3, and assuming that the εij are independently distrib-
uted with variance, σ2

e, the EMS of Table 8.2 can be derived (Kirk, 1995; Myers & Well, 1995).
Consider each expected mean square in turn to understand the information provided by MSA and
MSS/A.

E(MSA) states that the between-groups mean square, MSA, estimates error variance, σ2
e, plus

n times the variance in the treatment population means, θ2
A (if there is any effect of the treatment).

This result should make intuitive sense when you examine the formula for MSA:

MSA =

n�
a

j

(Ȳ̄.j − Ȳ̄. .)
2

a − 1
(8.7)

Equation 8.7 states that MSA is the variance of the condition means times the sample size, n.
Even if there were no differences among the treatment population means, the sample means would
differ just by chance because there are different individuals with different characteristics in each
group. The error variance, σ2

e, reflects this. If there is also an effect of the treatment, the µj will differ
and their variability will also be reflected in the value of MSA.

E(MSS/A) states that the within-groups mean square, MSS/A, is an estimate of error variance.
Again, this result may be understood intuitively by examining how MSS/A is calculated:

Table 8.2 Sources of variance (SV ) and
expected mean squares (EMS ) for
the one-factor between-subjects
design

SV EMS

A σ2
e + nθ2

A

S/A σ2
e

Note: θ2
A = �

j

(µj − µ)2/(a − 1). We use the θ2

(theta squared) notation rather than σ2 to remind
us that the treatment component of the EMS
involves division by degrees of freedom; the vari-
ance of the treatment population means would be

σ2
A = �

j

 (µj − µ)2/a.
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MSS/A =
SSS/A

a(n − 1)

=
�

j
�

i

(Yij − Ȳ̄.j)
2

a(n − 1)
(8.8)

Equation 8.8 may be rewritten as

MSS/A = �1

a��j

�
i

(Yij − Ȳ̄.j)
2

n −1

 
 
 

The expression in the square brackets on the right side is the variance of the jth group of scores, and
the entire right side is an average of the a group variances. Because subjects within a condition are
treated identically, they should differ only due to error (see Eq. 8.1). If we assume that error
variance is equal in each treatment population, MSS/A is an average of a estimates of the population
variance, σ2

e.
Given our understanding of what MSA and MSS/A estimate, we are in a position to understand

the logic of the F test, where F = MSA/MSS/A. First, assume that the null hypothesis is true and, also,
that there is homogeneity of variance; that is

µ1 = µ2 = . . . = µj = . . . = µa and σ1 = σ2 = . . . = σj = . . . = σa

Under these assumptions, MSA is an estimate of the error variance common to the a treatment
populations. In terms of E(MSA), θ2

A = 0 so E(MSA) is an estimate of error variance, σe
2. Thus, if

the null hypothesis is true, MSA and MSS/A both estimate the same population error variance and
their ratio should be about 1. Of course, it would be surprising if two independent estimates of the
same population variance were identical; that is, the ratio of MSA to MSS/A has a distribution of
values. More precisely, if H0 is true, the ratio, MSA/MSS/A, is distributed as F on a − 1 and a(n −1) df.
Critical values of F are tabled in Appendix Table C.5 and can also be obtained from various
software packages and websites.

But what if the null hypothesis is, in fact, false? For example, suppose that the method of study
does affect recall in the example of Table 8.1. Then the means of the groups of scores in Table 8.1
will differ not only because the scores in the different groups differ by chance, but also because the
groups were studied by different methods. In other words, if H0 is false, θ2

A > 0 so E(MSA) = σ2
e +

n θ2
A. The situation with respect to the within-group variance does not change: MSS/A should not be

affected by the independent variable because all subjects in a group receive the same treatment.
Therefore, when H0 is false, the ratio MSA/MSS/A should be greater than 1.

In summary, under the assumptions of the null hypothesis, homogeneity of variance, and
independently distributed scores, MSA and MSS/A are two independent estimates of the population
error variance, σ2

e. If we also assume that the population of scores is normally distributed, the ratio
of two independent estimates of the same population variance has an F distribution. Therefore,
under the assumptions summarized in Box 8.1, the ratio MSA/MSS/A is distributed as F. Because the
numerator is based on an estimate of the variance of a population means, it has a − 1 df. The
denominator has a(n − 1) df because the variance estimate for each group is based on n − 1 df and
MSS/A is an average of a variance estimates.

Appendix Table C.5 presents critical values of the F distribution. As an example of its use,
suppose we have three groups of 11 subjects each. Then the numerator df = a −1 = 2, and the
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denominator df = a(n − 1) = 30. Turning to the column headed by 2 and the block labeled 30, if
α = .05, we would reject the null hypothesis of no difference among the three treatments if the F we
calculate is greater than 3.32. Interpolation may be needed for degrees of freedom not listed in the
table. However, the critical F value is not necessary if the analysis is performed by any of several
software packages. These packages usually calculate the F based on the data and provide the exact
p-value for that F and the df for the design used.

8.4.4 The ANOVA Table
Panel a of Table 8.3 summarizes the developments so far, presenting the formulas for sums of
squares, degrees of freedom, mean squares, and the F ratio for the one-factor between-subjects
design. For any data set, most statistical software packages present this table with numerical results
in some form. Panel b presents the output for the data of Table 8.1. The results are significant at the
.05 level, indicating that there are differences among the means of the populations defined by
the four different study methods. Fig. 8.1 suggests that this is due to the poorer performance of the
control condition. However, there are a number of interesting questions that the omnibus F test
leaves unanswered. Are all three experimental methods significantly superior to the control method?
Do the means of the three experimental methods differ from each other? We will consider such
comparisons of means within subsets of conditions in Chapter 10.

We might also ask whether the differences among the four population means are large enough
to be of practical significance. As we noted when discussing effect size measures in Chapter 6,
statistical significance is not the same as practical or theoretical significance.

Table 8.3 The analysis of variance for the one-factor between-subjects design

(a) General form of the ANOVA

Source df SS MS F

Total an − 1 �
a

j = 1
�

n

i = 1

 (Yij − Ȳ̄. .)
2

A a − 1 n�
a

j = 1

 (Ȳ̄.j − Ȳ̄. .)
2 SSA/dfA MSA/MSS/A

S/A a(n − 1) �
a

j = 1
�

n

i = 1

 (Yij − Ȳ̄.j)
2 SSS/A/dfS/A

(b) ANOVA of the data of Table 8.1

Source Sum of squares df Mean square F p-value

Method 173.90 3 57.967 3.230 .034
Error 646.00 36 17.944
Total 819.90 39
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8.5 MEASURES OF IMPORTANCE

The p-value in Table 8.3 informs us that the effects of the method of memorization are statistically
significant, assuming that we had set alpha at .05. In addition, however, we need some indication of
the practical or theoretical importance of our result. Generally, we seek a measure that assesses the
magnitude of the effect of our treatment, A, relative to error variance. We will find that the EMS
analyses that guided the logic of the F test will also be very useful in thinking about appropriate
ways in which to assess the importance of an effect. We will consider several possible measures in
this section. Several sources also present discussions of these and other measures (e.g., Kirk, 1996;
Maxwell, Camp, & Arvey, 1981; Olejnik & Algina, 2000, 2003).

8.5.1 Measuring Strength of Association in the Sample:
η2 (Eta-Squared)
Greek-letter designations are usually reserved for population parameters, but η2 is actually a sample
statistic that is often used as a measure of association between the dependent and independent
variables (Cohen, Cohen, West, & Aiken, 2003). It describes the proportion of variability in the
sample as

η2 =
SSA

SStotal

(8.9)

Referring to Table 8.3, we have

η2
method = 173.9/819.9 = .212

Using SPSS, η2 can be obtained by selecting Analyze, then General Linear Model, then Univariate.
SPSS reports the R2, which for the one-factor design is also the same as η2. It also reports an
adjusted R2 as .146.4

Eta-squared has the advantage of being easily calculated and easily understood as a proportion
of sample variability. However, the value of η2 is influenced not only by the relative magnitudes of
the treatment effect and error variance, but also by n, dfA, and dfS/A. In addition, σ2

e contributes to the
numerator of η2. For these reasons, other statistics that measure importance are often preferred. We
turn to such estimates now, bearing in mind that our results rest on the assumptions underlying the
derivation of the EMS; i.e., independence of the εij and homogeneity of variance.

8.5.2 Estimating Strength of Association in the Population:
ω2 (Omega-Squared)
Whereas η2 describes the strength of association between the dependent and independent variables
by forming a ratio of sample sums of squares, ω2 is a measure of the strength of association in the
population; unlike η2, it is a ratio of population variances:

ω2 =
σ2

A

σ2
e + σ2

A

(8.10)

The numerator of the ratio is the variance of the treatment population means (the µj) or, equiva-
lently, the variance of the treatment effects (the αj):

4 The adjusted R2 = [SSA − (a −1)MSS/A]/SStotal
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σ2
A =

�
a

j

(µj − µ)2

a
(8.11)

=
�

a

j

α2
j

a

The denominator of ω2 is the total population variance; that is, the treatment population error
variance, σ2

e, plus the variance of the treatment population means, σ2
A. Thus, ω2 assesses the magni-

tude of the treatment effect relative to the total variance in the design. We cannot know the ratio
described by Equation 8.10 but we can derive estimates of σ2

A and σ2
e and therefore of ω2. We begin

with the EMS equations of Table 8.2:

E(MSA) = σ2
e + nθ2

A (8.12)

and

E(MSS/A) = σ2
e (8.13)

To obtain an estimate of σ2
A we first subtract Equation 8.13 from Equation 8.12, and divide by n;

then we have

MSA − MSS/A

n
= θ̂2

A

where the “hat” above θ2
A means “is an estimate of.” Because the numerator of ω2 as defined by

Equation 8.10 involves σ2
A, not θ2

A, and noting that σ2
A = [(a − 1)/a] × θ2

A, our estimate of σ2
A is

σ̂2
A = �a − 1

a ��MSA − MSS/A

n � (8.14)

We now have estimates of the numerator and denominator of ω2, therefore, substituting into
Equation 8.10, we have an estimate of ω2 for the one-factor, between-subjects design:

ω̂2 =
[(a − 1)/a](1/n)(MSA − MSS/A)

[(a − 1)/a](1/n)(MSA − MSS/A) + MSS/A

(8.15)

We may write Equation 8.15 in a different form, one which allows us to calculate ω̂2 from knowledge
of the F ratio, a, and n. The advantages are that the expression is somewhat simpler and, perhaps
more importantly, because most research reports contain this information, we can estimate
the strength of association for data collected by other investigators. We begin by defining FA =
MSA/MSS/A. Then, multiplying the numerator and denominator of Equation 8.15 by an, and divid-
ing by MSS/A, we have

ω̂2 =
(a − 1)(FA − 1)

(a − 1)(FA − 1) + na
(8.16)

Let’s review what Equations 8.15 and 8.16 represent. If we replicate the experiment many times,
the average value of the right-hand term will approximately equal ω2, the proportion of the total
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variance in the a treatment populations that is attributable to the variance of their means. We say
“approximately equal” because the expected value of a ratio is not the same as the ratio of expected
values. The approximation is reasonably accurate and the expression is much simpler than that for
the exact expression.

One other aspect of Equation 8.16 should be noted. Because the numerator and denominator
of the F reflect two independent estimates of the population error variance, when the null hypoth-
esis is true or the effects of A are very small, the F may be less than 1. Then, ω̂2 would be less than 0.
Because a variance cannot be negative, we conclude that ω2 = 0; that is, none of the total population
variance is attributable to the independent variable.

We can apply Equation 8.16 to the memory data in Table 8.1. In that experiment, a = 4, n = 10,
and (from Table 8.3) F = 3.230. Then, inserting these values into Equation 8.16,

ω̂2 =
(3)(2.23)

(3)(2.23) + 40
= .143

This is very close to the value of .146 noted earlier for adjusted R2. That the values of R2
adj and ω2 are

so close is not unusual; Maxwell, Camp, and Arvey (1981) reported that the two rarely differ by
more than .02. With respect to assessing the importance of either measure, Cohen (1988) suggested
that values of .01, .06, and .14 may be viewed as small, medium, and large, respectively. According
to those guidelines, the proportion of variability accounted for by the study method may be judged
to be large. Again, however, we caution that the importance attached to any value must be assessed
in the context of the research problem and the investigator’s knowledge of the research literature.

8.5.3 Cohen’s f
In Chapter 6, we presented Cohen’s d, a measure of the standardized effect for designs in which two
means are compared. Cohen’s f (1988) is a similar measure for situations in which the variance of
more than two means is of interest. The parameter f is defined as

f = σA/σe (8.17)

We can estimate f by substituting the estimate in Equation 8.14 in the numerator and MSS/A in the
denominator. Then we have

f̂ = �(a − 1)(MSA − MSS/A)

anMSS/A

(8.18)

which can also be written as

f̂ = √(a − 1)(FA − 1)/an (8.19)

For the data of Table 8.1, substituting the F value from Table 8.3 into Equation 8.19, we have

f̂ = √(3)(2.23)/40 = .409

Cohen has suggested that values of f of .1, .25, and .4 be viewed as small, medium, and large,
respectively. Therefore, as with ω2, the guidelines for f suggest that the standardized variance of the
four reading method estimates is large. That ω2 and f lead to the same conclusion about the size of
the variance of effects follows from the relationship between them; given an estimate of f, we can
also calculate an estimate of ω2, and vice versa. The relations are
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f 2 =
ω2

1 − ω2
and ω2 =

f 2

1 + f 2

A useful property of f is that it is closely related to the noncentrality parameter of the F
distribution; specifically,

λ = N f 2 (8.20)

The parameter, λ (lambda), determines areas under the noncentral F distribution, and therefore the
power of the F test. Smithson (2001) provides an SPSS syntax file for obtaining a confidence
interval on λ, and by making use of its relation to f and ω2, confidence intervals on those measures
can be obtained. The relation between f, λ, and power will be developed further in Section 8.8.

8.5.4 Measures of Importance: Limitations
In an introductory chapter to an edited collection aptly titled, “What if there were no significance
tests?”, Harlow (1997, pp. 5–6) reported that 11 of the book’s other 13 chapters “were very much in
favor” of reporting measures such as R2, ω2, and f, and the remaining two contributors “at least
mildly endorsed such use.” Similar support for measures such as these can be found in the American
Psychological Association’s guidelines for statistical usage (Wilkinson & Task Force, 1999), which
urge researchers to report effect size statistics. Nevertheless, there are potential pitfalls. Values of
these statistics may depend on the experimental design, the choice and number of levels of the
independent variable, the dependent variable, and the population sampled. Estimates of ω2 and f
imply homogeneous variances and independence of observations (cf. Grissom & Kim, 2001, who
discuss the variance assumption, and suggest alternative approaches for the two-group case).
Another concern is that squared coefficients tend to be small and it is sometimes easy to dismiss an
effect as trivial because of a small value of ω2.

These arguments suggest that we must be careful when interpreting these measures, or when
generalizing the results of any one study, or of making comparisons across studies that differ with
respect to the factors just cited. In addition, we should treat guidelines such as those set forth by
Cohen (1988) as suggestions, not as definitive boundaries between important and unimportant
effects. Even a very small advantage of one therapy over another may be important. In theoretical
work, a small effect predicted by a theory may be important support for that theory. In summary, if
care is taken in interpreting measures of strength, statistics such as f̂ and ω̂2 are useful additions to
the test statistics usually computed.

8.6 WHEN GROUP SIZES ARE NOT EQUAL

In the developments so far, our formulas have been based on the assumption that there are the same
number of scores in each group. In this section, we present an example with unequal ns, and present
formulas for sums of squares, expected mean squares, and measures of importance for this case.

The ns in conditions in a study may vary for one of several reasons. The populations may be
equal in size but data may be lost from some conditions, perhaps because of a malfunction of
equipment, or a subject’s failure to complete the data-collection session. Usually, individuals can be
replaced but sometimes this is impossible. In other instances, the treatments may affect the avail-
ability of scores; for example, animals in one drug condition may be less likely to survive the
experiment than animals in another condition. In still other instances, usually when we collect data
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from existing populations, conditions may differ naturally in the availability of individuals for
participation. For example, in clinical settings, there may be different numbers of individuals in
different diagnostic categories.

Unequal n complicates calculations in the one-factor design, which might tempt some
researchers to discard scores from some conditions to equate n. This is not a good idea for a couple
of reasons. Discarding subjects to equalize the group ns will reduce error degrees of freedom and,
consequently, power. Discarding subjects also may misrepresent the relative size of the populations
sampled. If so, the effects of some conditions may be weighted too heavily or too lightly in the data
analysis. Finally, computational ease should not be a consideration when software programs are
available to handle the calculations.

8.6.1 The ANOVA with Unequal n
The ANOVA for unequal group sizes is a straightforward modification of the equal-n case, at least
in the one-factor between-subjects design. (Complications arise when more than one factor is
involved; these will be treated in Chapters 9 and 24.) Table 8.4 presents the ANOVA formulas and
expected mean squares for the unequal-n case; the squared deviations in the SSA formula and the nj

are weighted by the group size. Note that if the nj are equal, these formulas reduce to the formulas in
Table 8.3.

Table 8.5 presents statistics based on Beck Depression scores for four groups of males who
participated in the University of Massachusetts Medical School research on seasonal effects; the
statistics are based on scores averaged over the four seasons. For the purposes of this example, we
excluded some subjects (those having no or only some high-school education, and those with
vocational training or an associate’s degree). The remaining groups are HS (high-school diploma
only), C (some college), B (bachelor’s degree), and GS (graduate school).5

The statistics of Table 8.5 and the box plots of Fig. 8.2 indicate that the groups differ in their
average depression score. Both means and medians are noticeably higher for those subjects who had
only a high-school education; subjects with a graduate school education have lower scores but they

Table 8.4 The analysis of variance for the one-factor between-subjects design with unequal group sizes

Source df SS MS F EMS

A a − 1 �
a

j = 1

nj (Ȳ̄.j − Ȳ̄. .)
2 SSA/dfA MSA/MSS/A σ2

e +
1

a − 1�j

njαj

S/A N − a �
a

j = 1
�

nj

i = 1

 (Yij − Ȳ̄.j)
2 SSS/A/dfS/A σ2

e

Total N − 1 �
a

j = 1
�

nj

i = 1

 (Yij − Ȳ̄. .)
2

Note: nj is the number of scores in the j th group and N = �
a

j = 1

nj.

5 The data may be found in the Table 8_5 Male_educ file; go to the Tables page of the book’s website.
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are higher than those in the remaining two categories. Variances are also highest in the HS and GS
groups; the differences among the variances as well as among the H-spreads in the figure warn us
that heterogeneity of variance may be an issue. We also note that both the skew statistics and the
long tails at the high end of depression scores in the figure indicate that the populations are unlikely
to be normally distributed. A Q–Q plot (see Chapter 2) would confirm this.

Applying the formulas in Table 8.4, we obtain the ANOVA results in Table 8.6; these reveal that
the means of the four groups differ significantly. However, the characteristics of the data revealed by

Fig. 8.2 Box plot of Beck Depression scores as a function of educational level.

Table 8.5 Summary statistics for Beck Depression scores in four educational levels (the data are in the Male-educ file;
go to the Seasons page on the book’s website)

Level of education

HS C B GS

No. of cases 19 33 37 39
Median 6.272 2.875 2.265 3.031
Mean 6.903 3.674 3.331 4.847
Variance 34.541 5.970 9.861 26.218
Skewness (g1) .824 .368 2.047 1.270
Kurtosis (g2) .168 −.919 5.837 .745

Note: HS = high-school diploma only; C = some college; B = bachelor’s degree; GS = graduate school.

Table 8.6 ANOVA of the depression means in Table 8.5

Source SS df MS F p

Education 186.501 3 62.167 3.562 .016
Error 2,164.061 124 17.452
Total 2,350.562 127
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our preliminary exploration (Table 8.5, Fig. 8.2) indicate that the assumptions of the analysis of
variance are violated. In Section 8.8, we discuss those assumptions, consider alternative analyses
that respond to violations of the assumptions, and apply one such analysis to the depression scores.

8.6.2 Measures of Importance with Unequal n
As in the equal n design, η2 = SSA/(SSA + SSS/A). For the Beck Depression data, substituting values
from Table 8.6, η2 = 186.501/2,350.562, or .079. The formulas for ω2 and Cohen’s f undergo a very

slight modification. We replace the n in Equation 8.14 by the average n, n̄, where n̄ = �
j

 nj /a = N/a.

We can simplify things further by replacing an̄ by N, the total sample size. Then the equations
estimating, σ2

A, ω2, and Cohen’s f apply with no further changes.
To estimate the population variance of the Beck Depression means as a function of edu-

cational level, substitute the mean squares from Table 8.6 into Equation 8.14, and with �
j

 nj = 128,

σ̂2
A = (3)(62.167 − 17.452)/128 = 1.048

We now can estimate ω2 using Equation 8.16 with N replacing an. Then

ω̂2=
(a − 1)(FA − 1)

(a − 1)(FA − 1) + N

=
(3)(2.562)

(3)(2.562) + 128
= .057

We use the same variance estimate to estimate Cohen’s f:

f̂ = σ̂A/σ̂e

= √1.048/17.245 = 0.245

Whether we view ω2 or f, Cohen’s guidelines suggest that the effect is of medium size.
In leaving the analysis of the effects of educational level on Beck Depression scores, we again

caution that our exploration of the data suggested that both the normality and homogeneity of
variance assumptions were violated, making suspect the results of significance tests and estimates
of effect size. We will return to the general issue of violations of assumptions, and possible
remedies, in Section 8.8.

8.7 DECIDING ON SAMPLE SIZE: POWER ANALYSIS IN THE
BETWEEN-SUBJECTS DESIGN

Together with the practical constraints imposed by the available access to subjects and time, stat-
istical power should be a primary consideration in deciding on sample size. In order to incorporate
this into our decision about sample size, we need to decide on a value of power and we need a value
of the minimum effect size we wish to detect. As we saw in our treatment of t tests in Chapter 6,
there are several ways that we might proceed.

One possibility is that we use Cohen’s guidelines to establish an effect size. For example,
suppose that in designing the memory experiment described in Section 8.2, we had decided that we
want power equal to at least .90 to reject an effect that was large by Cohen’s guidelines; then f = .4.
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How many subjects should we have included in the study? An easy way to answer this question is to
use G*Power 3, available on the book’s website. Fig. 8.3 shows the screen involved in the calcula-
tions. We selected F tests from the Test Family menu, the ANOVA for the one-way design from the
Statistical test menu, and the a priori option from the Type of power analysis menu. We set the Input

Fig. 8.3 G*Power 3 calculation of the N needed to have power = .90 when the effect size, f, equals .4.
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Parameters as shown in the left-hand column. In the Output Parameters column, we find that the
required total N is 96, or 24 in each group. The other output results should be self-explanatory
except for the noncentrality parameter λ; λ = N f 2, or 96 × .16. This parameter is an index of the
noncentral F distribution’s distance from the central F distribution; when λ = 0, power equals the
Type 1 error rate and as λ increases, so does the power of the test.

An alternative to using Cohen’s guidelines is to base our assumed effect size on results from a
pilot study. In this case, we would recommend using Equation 8.18 or 8.19 to obtain an estimate of
f. We would then insert this into G*Power. For the data of Table 8.1, this estimate was .409. If we
require power = .9, set α = .05; then with four groups the required N is 92, slightly less than when we
entered f = .4.

Finally, in some cases, we might have no single data set on which to base an estimate of f.
However, practical or theoretical considerations, or a review of published results from several
related studies, might suggest reasonable values of the treatment population means and of the
population standard deviation. For example, in planning an experiment involving three groups, we
might decide that the most likely values of the population means are 50, 60, and 70, and that the
population standard deviation is about 20. Using G*Power 3, we enter α = .05, power = .9, and the
number of groups = 3, and then select the determine button. This brings up a panel in which we
enter the hypothesized population means and the population standard deviation. Select “Calculate
and transfer to main window.” G*Power calculates

σA = √[(50 − 60)2 + (60 − 60)2 + (70 − 60)2] /3 = 8.165

and divides by the standard deviation of 20 to yield f = .408. Transferring this value to the main
window, the required total N is 81, or 27 in each of the three groups.

Post hoc, or retrospective power, is also available in G*Power, as well as in SPSS; in the latter,
Observed power is an option in the univariate analysis program. However, as we discussed in Chap-
ter 6, we have reservations about reporting power based on the observed set of statistics. Confidence
intervals on the raw and standardized effects will prove more informative and be less misleading.

8.8 ASSUMPTIONS UNDERLYING THE F TEST

In Chapter 6, we discussed the consequences of violations of assumptions of independence, nor-
mality, and homogeneity of variance for the t test, and considered several possible remedies, includ-
ing transformations, t tests that take heterogeneous variances into account, t tests based on trim-
ming the data set, and tests based on ranks. The F test in the one-factor, between-subjects design
rests on the same assumptions, and in addition the data should be consistent with the underlying
structural model. The consequences of violations of assumptions, as well as the remedies proposed,
parallel those discussed in Chapter 6. In the following sections, we consider each assumption in
turn, describing both the consequences of violations and possible remedies.

8.8.1 The Structural Model
The analysis of variance for the one-factor design begins with the structural model of Equation 8.3.
This equation implies that only one factor systematically influences the data, and the residual
variability (MSS/A) represents random error. However, researchers sometimes ignore factors that
have been manipulated but are not of interest in themselves. If those factors contribute significant
variability, the one-factor model is not valid for the research design. Common examples arise when
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half of the subjects are male and half are female, or when subject running is divided equally
between two experimenters, or when the position of an object is counterbalanced in an experiment
involving a choice. Although these variables may be irrelevant to the purpose of the research, they
may affect the scores. If so, the MSS/A represents both error variance and variance due to gender,
experimenter, or position. However, the variance due to these “irrelevant” variables will not con-
tribute to MSA. For example, if each method in our earlier example has an equal number of male
and female subjects, sex of subject will not increase the method mean square. The analysis based on
the one-factor model then violates the principle that the numerator and denominator of the F ratio
should have the same expectation when H0 is true. In such situations, the denominator has a larger
expectation than the numerator because the irrelevant variable makes a contribution only to the
denominator. The result is a loss of power, which can be considerable if the irrelevant variable has a
large effect. We say that the F test is negatively biased in this case, meaning that the Type 1 error rate
will be less than its nominal value if the null hypothesis is true. As a general rule, the researcher
should formulate a complete structural model, one which incorporates all systematically varied
factors, even those thought to be irrelevant or uninteresting. In the examples cited, this would mean
viewing the study as involving two factors, the independent variable of interest and gender (or
experimenter, or position), and carrying out the analysis described in Chapter 9.

8.8.2 The Independence Assumption
When only one observation is obtained from each subject, and subjects are randomly assigned to
treatments or randomly sampled from distinct populations, the assumption that the scores are
independently distributed is likely to be met. However, there are exceptions that sometimes are not
recognized by researchers. For example, suppose we want to compare attitudes on some topic for
males and females. Further suppose that before being tested, subjects participate in three-person
discussions of the relevant topic. The scores of individuals who were part of the same discussion
group will tend to be positively correlated. If this failure of the independence assumption is ignored
(and it has been in some studies; see Anderson and Ager, 1978, for a review), there will be a positive
bias—an inflation of Type 1 error rate—in an F test of the gender effect (Myers, DiCecco, & Lorch,
1981; Myers & Well, 1995). A class of analyses referred to as multilevel, or hierarchical (e.g.,
Raudenbush & Bryk, 2002), provides a general approach to this and other data analysis issues.

Another potential source of failure of the independence assumption is the “bottom-of-the-
barrel” problem. Researchers at universities often feel that as the semester progresses, the perform-
ance of volunteer subjects in experiments tends to become poorer because less motivated subjects
usually volunteer for research credit late in the semester. In this case, scores obtained close in time
will tend to have higher correlations than those further apart in time.

8.8.3 The Normality Assumption
Violations of the normality assumption are relatively common and merit attention because they can
reduce the power of the F test.

Consequences of Violating the Normality Assumption. As with the t test, the Type 1
error probability associated with the F test is little affected by sampling from non-normal popula-
tions unless the samples are quite small and the departure from normality extremely marked (e.g.,
Donaldson, 1968; Lindquist, 1953, pp. 78–90; Scheffé, 1959). This is true even when the independ-
ent variable is discretely distributed, as it is whenever rating data or response frequencies are
analyzed. In all but the most skewed distributions, computer sampling studies indicate that Type 1
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error rates are relatively unaffected when such measures are submitted to an analysis of variance
(Bevan, Denton, & Myers, 1974; Hsu & Feldt, 1969; Lunney, 1970).

Although in most instances the Type 1 error rate is relatively unaffected by departures from
normality, loss of power is a concern when distributions are long-tailed, skewed, or include outliers.
In each of these situations, variability is high relative to the normal distribution. Thus, procedures
that address the increased variability often have more power than the conventional F test. Several
potential remedies are considered next.

Dealing with Violations of the Normality Assumption: Tests Based on Trimmed
Data. As we explained in Chapter 6, merely deleting scores is not a valid procedure. However, a
ratio of mean squares distributed approximately as F can be constructed by an approach similar to
the trimmed t test illustrated in Chapter 7. An example should help us understand how this is done.
Table 8.7 presents three groups of 11 scores each; the Y scores are the original values, sorted in
ascending order within each group. Recognizing the presence of some outlying scores in each
group’s tail, we trimmed the lowest and highest two scores in each group, yielding the T data. We
then replaced the deleted scores with the closest remaining scores to create the winsorized, W, set.
We chose to delete two from each group’s tail because this is roughly 20% of 11, the number of Y
scores. Two ANOVAs, one on the T scores and one on the W scores, provide the values needed for
the trimmed F test. The test is described and illustrated in Box 8.2.

Box 8.2 The Trimmed F Test Applied to the Data of Table 8.7

After performing the ANOVAs on the T and W scores, do the following:

1. From the ANOVA of the T data, get the between-groups mean square, MSBG,tk (tk refers to
trimming k scores from each tail); MSBG,tk = 9.19.

2. From the ANOVA of the W data, get the within-groups sum of squares, SSWG,wk; SSWG,wk

= 27.455. This is divided by the degrees of freedom for the trimmed data set,
a(n − 1 − 2k) = (3)(10 − 4) = 18. Therefore, the winsorized error mean square, MSWG,wk, is
27.455/18 = 1.523.

3. The trimmed F statistic is F = MSBG,tk/MSWG,wk = 27.455/1.523 = 18.269, and is distributed on
2 and 18 df. Then p = .000.

Table 8.7 An example of original (Y ), trimmed (T ) and winsorized data (W )

Y 5 6 8 8 10 10 10 10 10 11 14
Group 1 T 8 8 10 10 10 10 10

W 8 8 8 8 10 10 10 10 10 10 10

Y 5 9 11 11 11 11 12 13 13 13 16
Group 2 T 11 11 11 11 12 13 13

W 11 11 11 11 11 11 12 13 13 13 13

Y 9 10 10 10 10 11 11 11 12 12 15
Group 3 T 10 10 10 11 11 11 12

W 10 10 10 10 10 11 11 11 12 12 12
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For comparison purposes, the F statistic on 2 and 30 df for the Y data was 2.531; the corres-
ponding p-value was .096. Clearly, in this example, the trimmed t test led to a considerably lower
p-value. However, a word of caution is in order. In our example, the variances were roughly homo-
geneous and the distributions were roughly symmetric. Under other conditions, particularly if the
group sizes vary, Type 1 errors may be inflated (Lix & Keselman, 1998). We will consider such cases
in Section 8.8.4.

Dealing with Violations of the Normality Assumption: Tests Based on Ranked
Data. In the Kruskal–Wallis H Test (1952) and the rank-transform F test (Conover & Iman,
1981), all scores are ordered with a rank of 1 assigned to the lowest score in the data set and a rank
of N assigned to the largest, where N is the total number of scores. In case of ties, the median rank is
assigned; for example, if the five lowest scores are 1, 4, 7, 9, and 9, they would receive ranks of 1, 2,
3, 4.5, and 4.5 respectively. The H test is available from the nonparametric menu of statistical
packages such as SPSS, Systat, and SAS. In SPSS, select Analyze, then Nonparametric, and then k
independent groups. Applying the Kruskal–Wallis H test to the data of Table 8.7, p = .039. As with
the trimmed F test, the result is a lower value than that associated with the usual F test of the Y
data.

In the rank-transform F test, the usual one-way ANOVA is performed on the ranks and the test
statistic, FR, is evaluated on a − 1 and N − a df. H and FR will generally result in similar p-values.
This is not surprising given that they are related by the following equation:

FR =
(N − a)H

(a − 1)(N − 1 − H )

Both tests are more powerful alternatives than the usual F test when the populations are not
normally distributed but have the same values of variance, skewness, and kurtosis; that is, when the
populations have the same, non-normal distribution. Furthermore, they are only slightly less
powerful than the F test when the distributions are normal. However, if the treatment populations
do not have identical distributions, then H and FR tests may reject the null hypothesis because of
differences in the shapes or variances of the distributions. Therefore, the tests are not appropriate as
tests of location when heterogeneity of variance is suspected (Oshima & Algina, 1992; Vargha &
Delaney, 1998).

As we discussed in Chapter 6, when the data are skewed, transformations may provide a
solution. Data transformations are also a possible response to heterogeneity of variance. We will
discuss this option in the context of our treatment of the assumption of homogeneous variances.

8.8.4 The Homogeneity of Variance Assumption
Variances may differ across conditions for one of several reasons. One possible cause of hetero-
geneity of variance is an interaction of an experimental treatment with individual characteristics.
For example, a drug tested for its effects on depression may result in a higher variance than, but the
same mean score as, a placebo. This would suggest that some individuals had improved but others
had been adversely affected by the drug. A second possible reason for unequal variances is that
some populations are more variable than others on a particular task. For example, although boys
may have higher average scores on some measure of mathematical ability, they may also have a
higher variance. Still another factor in findings of heterogeneity of variance are floor, or ceiling,
effects. Variability may be reduced in one condition relative to another because of a lower, or upper,
limit on performance due to the measuring instrument. Finally, variances tend to be correlated with
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means, usually positively; the normal distribution is the sole exception in which the means and
variances are independently distributed. For all of these reasons, variances are often unequal, or
heterogeneous, in the populations sampled in our research. In what follows, we summarize some
consequences of the failure of this assumption and we then consider alternatives to the standard F
test.

Consequences of Heterogeneity of Variance. When there are the same number of scores
in all conditions, heterogeneous variances usually will cause Type 1 error rates to be slightly inflated.
The inflation is usually less than .02 at the .05 level, and less than .005 at the .01 level, provided the
ratio of the largest to smallest variance is no more than 4 to 1, and n is at least 5. Even larger ratios
may not be a problem, but this will depend upon sample size, the number of groups, and the shape
of the population distributions. The results of computer simulations employing these factors are
discussed in articles by Clinch and Keselman (1982) and Tomarken and Serlin (1986).

When there are different numbers of scores in each condition, simulation studies clearly dem-
onstrate that heterogeneous variances are a problem. Sampling from heavy-tailed and skewed dis-
tributions, and using variance ratios of largest to smallest as high as 16:1, Lix and Keselman (1998)
found that error rates were as high as .50 in some conditions. Sampling from sets of either three or
four normally distributed populations, Tomarken and Serlin found that at a nominal .05 level, the
actual Type 1 error rate was as low as .022 when the group size was positively correlated with the
variance (i.e., larger groups associated with greater variances) and as high as .167 when the correl-
ation was negative. This is because the average within-group variance (i.e., the error term, MSS/A) is
increased when the largest groups have the largest variances and, conversely, is decreased when the
largest groups have the smallest variances. Therefore, a positive relation between group size and
variance will negatively bias the F test whereas a negative relation will positively bias the test.

There is evidence in the research literature that extreme variance ratios do occur (Wilcox, 1987),
and simulation studies make clear that heterogeneity of variance can inflate Type 1 error rates or
deflate power, depending upon various factors such as sample sizes and the type of distribution
sampled. That leaves us with two questions. First, for a given data set, how do we decide whether to
abandon the standard ANOVA for some remedial procedure? Second, If we do decide that unequal
variances are a threat to the validity of the standard F test, what alternative should we use? We
consider these questions next.

Detecting Heterogeneity of Variance. As always, we urge that researchers begin the data
analysis by examining summary statistics and plots of the data. Computer programs such as SPSS’s
Explore module are very helpful in this respect. Typically, they provide descriptive statistics, tests of
homogeneity of variance, and box plots. The box plot for the Beck Depression data as a function of
educational level was presented in Fig. 8.2 and, as we noted there, differences among the groups in
shape and spread are quite evident. The range of variances in Table 8.5 suggest that the alpha level
reported in Table 8.6 may not be the actual probability of a Type 1 error. For confirmation of this,
we may wish to test whether the variances are homogeneous. Several tests of homogeneity of
variance have been proposed. Some are overly sensitive to violations of the normality assumption
(Bartlett, 1937; Cochran, 1941; Hartley, 1950; Levene, 1960) or lack power relative to other
procedures (Box, 1953; Games, Keselman, & Clinch, 1979; Scheffé, 1959).

We recommend the Brown–Forsythe test (Brown & Forsythe, 1974a) based on deviations from
the median. Sampling studies indicate it has only a slightly inflated Type 1 error rate and good
power relative to various competitors even when ns are not equal and distributions depart mark-
edly from the normal (Games, Keselman, & Clinch, 1979). In this test, the absolute residual of each
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score from its group median, |Yij − Ȳ̄.j.|, is computed, and these residuals are then submitted to
the analysis of variance. Although these residuals do not directly represent the variance, their
variance is an index of the spread of scores. For the depression scores summarized in Table 8.5,
SPSS’s Explore module reports the value of this statistic as 4.511 which, on 3 and 124 df, is very
significant (p = .005). This indicates that the mean absolute residual varies significantly as a function
of education level, confirming our sense that the spread of scores was indeed a function of the
educational level.

Once we conclude that the population variances are not equal, the next question is: What shall
we do about it? One possible response is to seek a transformation of the data that yields homo-
geneity of variance on the scale resulting from the transformation. A second possibility is to
compute an alternative to the usual F test. We consider each of these approaches next.

Dealing with Heterogeneity of Variance: Transformations of the Data. Transformation of the
data can sometimes result in variances that are more nearly similar on the new scale. Typical data
transformations include raising scores to a power, or taking the natural logarithm of each score.
These and other transformations have been used (1) to transform skewed distributions into more
nearly normal distributions; (2) to reduce heterogeneity of variance; and (3) to remedy a condition
known as “nonadditivity” in designs in which each subject is tested on several trials or under several
treatment levels. A transformation which best achieves one purpose may not be equally suitable for
other purposes, although it is true that transformations that equate variances do tend to yield more
normally distributed scores. Our focus here will be on transformations designed to achieve homo-
geneous variances.

We begin by noting that transformations are not always a good option for a researcher. One
potential problem is that values on the new scale may be less easily interpreted than on the original
scale. For example, the percent correct on a test (y) is easily understood and communicated, but this
is less true of the arc sine transformation (sin−1 √y, the angle whose sine is the square root of y),
often recommended to stabilize the variances of percentage scores. Another potential problem is
that although variance-stabilizing transformations will usually maintain the ordering of the group
means, the relative distances among means may change, creating problems when interpreting the
effects of the factors manipulated. Suppose a researcher has predicted that response time will vary
as a linear function of the levels of the independent variable. A test of linearity on a transformed
scale will probably not support the prediction because the means on the new scale are likely to fall
on a curve.

If the measurement scale is arbitrary, however, transfoming the data is one strategy for dealing
with heterogeneous variances. In that case, how does the researcher identify a useful transformation
for reducing the range of variances across experimental conditions? One possibility is to try several
transformations. However, it is not appropriate to conduct a significance test after each transform-
ation and choose the data scale that yields the largest F value. Such a procedure is bound to increase
the probability of a Type 1 error if the population means do not differ. A more principled approach
to identifying a variance-stabilizing transformation depends on observing a functional relation
between the cell variances and cell means (Smith, 1976).

Emerson and Stoto (1983) described an approach that will frequently produce more nearly
equal variances. The technique involves plotting the log of the H-spread (or interquartile range; see
Chapter 2) as a function of the log of the median and then finding the slope of the best-fitting
straight line. SPSS provides such a spread versus level plot in its Explore module if the “Plots”
option is chosen and “Power Transformations” is checked. The output includes the value of the
slope, which is used to transform the original score, Y, into the transformed score, Z, by the
following power transformation:
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Z = Y 1 − slope (8.24)

We obtained this plot for data from Royer’s (1999) study of arithmetic skills in elementary
schoolchildren.6 Using SPSS’s Explore module to analyze multiplication response times (RT ), the
slope of the spread-versus-level plot was 2.227 and the recommended power was therefore −1.227.
We rounded this, letting Z = Y −1 = 1/Y, thus re-expressing response time as response speed, a meas-
ure that is easily understood. Table 8.8 presents the group means and variances on the original and
new data scales. On the original RT scale, the ratio of largest to smallest variance is almost 15 to 1;
on the speed scale, that ratio is only 1.4 to 1. We might also point out that the procedure illustrated
here of rounding the recommended power to the nearest “meaningful” number makes sense from
the perspective of communicating the transformation to an audience. For example, transforming by
taking an inverse (power = −1) or square root (power = .5) or square (power = 2) will be more easily
communicated and is unlikely to produce very different results than some “odd” number, such as
−.742 or 1.88.

Often the researcher will not wish to transform the data because of the difficulty of interpreting
effects (or lack of effects) on the new scale, or because a strong theory dictates the dependent
variable. In other instances, it may be impossible to find a variance-stabilizing transformation.7

Fortunately, there are other solutions that often can solve the heterogeneity problem. We turn now
to consider modifications of the standard F test.

Dealing with Heterogeneity of Variance: Welch’s F test. Several alternatives to the
standard F test of the equality of the a population means have been proposed (Alexander &
Govern, 1994; Brown & Forsythe, 1974b; James, 1951, 1954; Welch, 1951), but no one test is best
under all conditions. When the data are normally distributed and ns are equal, most of the pro-
cedures are reasonably robust with respect to Type 1 error rate; however, the standard F is slightly
more powerful if the population variances are equal. When the variances are not equal, the choice
of test depends upon the degree of skew and kurtosis, whether outliers are present, the degree of
heterogeneity of variance, the relation between group sizes and group variances, and the total N
(Clinch & Keselman, 1982; Coombs, Algina, & Oltman, 1996; Grissom, 2000; Lix, Keselman, &
Keselman, 1996; Tomarken & Serlin, 1986).

Table 8.8 Means and variances of multiplication RT and speeds from the Royer data

Grade

5 6 7 8

RT mean 3.837 1.998 1.857 1.935
RT variance 4.884 .612 .328 .519
Speed mean .350 .560 .586 .583
Speed variance .033 .028 .031 .038

6 These data are in the file Royer_RT; go to the Royer data set on the book’s website.
7 Not all measures can be successfully transformed. For example, on the basis of the spread-vs-level plot, we found

that the best transformation of the depression scores was to raise them to the −.106 power. However, following this
transformation, and also after a log transform, variances still differed significantly by some tests, and the normality
assumption was still violated.
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Although there is rarely a clear-cut choice for any given data set, in a review of several simula-
tion studies, Lix et al. (1996) concluded that the Welch test, Fw, provided the best alternative when
both Type 1 error rates and power were considered. Fw performs well relative to various competitors
except when the data are highly skewed (skew > 2.0) or group sizes are less than 10 (Lix et al., 1996;
Tomarken & Serlin, 1986). Furthermore, the test is available in several statistical packages. In SPSS,
both the standard test results and those for the Welch test are in the output of the One-Way ANOVA
(Compare Means) option.

If you lack the appropriate software, Box 8.3 presents the necessary formulas. Substituting
values from Table 8.5 in the equations in the box, we have:

Then, u = 11.318, Ȳ̄. . = 3.871, A = 2.594, B = 1.024, F = 2.533, df1 = 3, df2 = 1/.018 = 55, and p = .066.
The resulting p-value is considerably higher than the .016 we obtained using the standard F calcula-
tions. The discrepancy can be accounted for by noting that the correlation between nj and s2

j is
negative, −.59. There are only 19 subjects in the group having only a high-school education (HS)
whereas the other groups all have at least 33 subjects. Because the larger groups have smaller
variances, they have more weight in the denominator of the F test; that small denominator contrib-
utes to a larger F statistic with a resulting inflated probability of a Type 1 error. The Welch test has
compensated for this by taking the inequalities in group sizes and variances into account.

Box 8.3 Formulas for the Welch (Fw) Test

FW =
A
B

where A =
1

a − 1 � wj (Ȳ̄.j − Ȳ̄. .)2

B = 1 + �2(a − 2)
a2 − 1 ��[1 − (wj/u)]2

nj − 1

and wj = nj /s2
j ; u = � wj; Ȳ̄. . = � wjȲ̄.j/u

df1 = a − 1

1
df2

= � 3
a2 − 1��

[1 − (wj/u)]2

nj − 1

A Robust F Test.  The normality and homogeneity of variance assumptions often are violated in
the same data set. This is particularly a problem when ns are unequal, as in the Beck Depression
data we analyzed. A promising approach is to apply the Welch F test to means based on data from
which the highest and lowest 20% have been trimmed.(Keselman, Wilcox, Othman, & Fradette,
2002; Lix & Keselman, 1998). The test is described in Box 8.4. Because it uses trimmed means and

HS C B GS

wj = .550 5.528 3.752 1.488
Ȳ̄.j = 6.903 3.674 3.331 4.847
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winsorized variances, it may be helpful to refer to Chapter 7 where trimmed means and winsorized
variances were defined and illustrated.

Box 8.4 Welch’s (1951) F Test with Trimmed Means and Winsorized
Variances

1. Replace the nj in Box 8.2 by hj = nj − 2kj, where k j is the number of scores trimmed from each
tail of the j th group. For example, in the HS group of the depression analysis, nj = 19. If we trim
approximately 20% from each tail, k = 4 and h = 19 − (2)(4) = 11.

2. The Ȳ̄.j are replaced by the trimmed means.
3. The s2

j  are replaced by the winsorized group variances.
4. With these substitutions, the formulas for the Welch F test in Box 8.3 apply directly.

8.9 SUMMARY

This chapter introduced the analysis of variance in the simplest possible context, the one-factor,
between-subjects design. The developments in this chapter will be relevant in the analyses of data
from other designs. These developments included:

• The analysis of variance. We illustrated the idea of a structural model that underlies the
data and directs the partitioning of variability in the data. The structural model is the basis
for determining what the variance calculations estimate in terms of population variance
parameters. The EMS, in turn, justify the error terms for tests of the null hypothesis and
are involved in estimating measures of the magnitude of effects.

• Measures of importance. We defined and applied to data several statistics that indicate the
importance of the independent variable. Confidence intervals also were presented that
provide a range of plausible values of the parameter being estimated.

• A priori power and sample size. We illustrated how sample size for a multi-group study can
be determined, once the values of α, the desired power, and the effect size of interest are
selected.

• Assumptions underlying the significance test and the estimates of measures of importance. We
reviewed these assumptions, discussed the consequences of their violation, cited tests of the
assumptions that are available in many software packages, and described procedures that
respond to violations.

APPENDIX 8.1

Partitioning the Total Variability in the One-Factor Design
The following developments involve two indices of summation: i indexes a value from 1 to n within
each group, where n is the number of individuals in a group; j indexes a value from 1 to a, where a is
the number of groups. Appendix A provides an explanation of the use of this notation, using
several examples.
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Squaring both sides of Equation 8.1 yields

(Yij − Ȳ̄. .)
2 = (Yij − Ȳ̄.j)

2 + (Ȳ̄.j − Ȳ̄. .)
2 + 2(Yij − Ȳ̄.j)(Ȳ̄.j − Ȳ̄. .)

Summing over i and j, and applying the rules of Appendix A, we have

�
a

j
�

n

i

(Yij − Ȳ̄. .)
2 = �

a

j
�

n

i

(Yij − Ȳ̄.j)
2 + n�

a

j

(Ȳ̄.j − Ȳ̄. .)
2 + 2�

a

j
�

n

i

(Yij − Ȳ̄.j)(Ȳ̄.j − Ȳ̄. .)

Rearranging terms, we can show that the rightmost (cross-product) term equals 0:

2�
a

j
�

n

i

(Yij − Ȳ̄.j)(Ȳ̄.j − Ȳ̄. .) = 2�
a

j

(Ȳ̄.j − Ȳ̄. .)�
n

i

(Yij − Ȳ̄.j)

= 2�
a

j

(Ȳ̄.j − Ȳ̄. .)(0) = 0

The last result follows because the sum of deviations of scores about their mean is zero.

EXERCISES

8.1 A data set has three groups of five scores each. Because the scores involve decimal values, each
score is multiplied by 100.
(a) How will the mean squares and F ratio be affected (relative to an analysis of the original

data set)?
(b) In general, what happens to a variance when every score is multiplied by a constant?
(c) Suppose we just added a constant, say, 10, to all 15 scores. How would that affect the mean

squares and F ratio?
(d) Suppose we added 5 to all scores in the first group, 10 to all scores in group 2, and 15 to all

scores in group 3? Should MSA change? MSS/A? Explain.
8.2 Following are summary statistics from a three-group experiment. Present the ANOVA table

when (a) n1 = n2 = n3 = 10 and (b) n1 = 6, n2 = 8, and n3 = 10; the totals, or sums of scores, for
the groups, the T.j., and the variances are:

8.3 The data are:

A1: 27 18 16 33 24 A2: 23 33 26 19 38

(a) Perform the ANOVA.
(b) Next, do a t test. How are the results of parts (a) and (b) related?

8.4 The F ratio is basically a test of the equality of the population variances estimated by its
numerator and denominator. Therefore, it is applicable to the following problem. We have
samples of reading scores from 5 boys and 11 girls. We form a ratio of the variances of the
two samples, s2

B /s2
G.

A1 A2 A3

Totals 30 48 70
Variances 3.2 4.1 5.7
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(a) If many samples of sizes 5 and 11 are drawn, (i) what is the proportion of F values greater
than 2.61 that we should expect? (ii) less than 4.47?

(b) What assumptions are implied in your approach to answering part (a)?
8.5 The file EX8_5 at the website contains three groups of 15 scores.

(a) Explore the data; examine statistics and graphs relevant to assessing the normality and
homogeneity of variance assumptions. What are the implications for a significance test?

(b) Calculate the F and Kruskal–Wallis H tests for these data and comment on the outcome,
relating your discussion to your answer to part (a).

8.6 (a) A nonparametric test is only one way to reduce the effect of the straggling right tail of the
data in Exercise 8.5. Explore the data after transformation by taking (1) the square root of
each score and (2) the natural log of each score. Does either one better conform to the
assumptions underlying the F test? Explain.

(b) Carry out the ANOVA with the transformation you selected in part (a). How do the
results compare with those for the original F test in Exercise 8.5?

(c) Find the confidence intervals for the three means, using the Y data. Then do the same with
the group means for the transformed scores. Transform the means of the transformed
scores to the original scale. For example, if you had selected the square-root transform-
ation, you would square the transformed means; if you had selected the log transform-
ation, you would raise e to the power of the mean on the log scale (for example, if the
mean on the log scale = 3, on the original scale we would have e3 = 20.09). Do the same for
the 95% confidence limits for each of the three means. Compare the results for the original
and transformed data.

8.7 The following are the results of two experiments, each with three levels of the independent
variable.

(a) For each of the two tables, calculate the Fs, and estimates of ω2
A.

(b) What does a comparison of the two sets of results suggest about the effect of the change in
n upon these two quantities?

(c) Calculate η2
A for each table. How does the change in n affect the value of η2

A?
(d) Suppose F = 1. (i) What must the value of ω2

A be? (ii) What must the value of η2
A be (as a

function of a and n)?
(e) Comment on the relative merits of the various statistics calculated as indices of the

importance of A.
8.8 The result of an ANOVA of a data set based on three groups of 10 scores each is:

(a) Is there a significant A effect if α = .05?
(b) Estimate Cohen’s f for these results.

Table 1 Table 2

SV df MS SV df MS
A 2 80 A 2 42.5
S/A 27 5 S/A 12 5

SV df SS MS F

A 2 192 96 3.2
S/A 27 810 30
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(c) Assuming this is a good estimate of the true effect of A, what power did the experiment
have?

(d) How many subjects would be required to have power = .8 to detect a medium-sized
effect? Use Cohen’s guidelines.

8.9 According to a mathematical model for the experiment in Exercise 8.8, the predicted means
are 10 in condition 1, 14 in condition 2, and 18 in condition 3. If the theory is correct, what
sample size would be needed to achieve .8 power to reject the null hypothesis of no difference
among the means? Assume that the error mean square is a good estimate of the population
variance, and α = .05.

8.10 In a study of the relative effectiveness of three methods of teaching elementary probability,
students read one of three texts: the Standard (S ), the Low Explanatory (LE ), and the High
Explanatory (HE ). The data—scores on a test after a single reading—are in the file EX8_10
on the website.
(a) Explore the data. Are there any indications of departures from the underlying

assumptions?
(b) Test the null hypothesis that the texts do not differ in their effects.
(c) Estimate ω2 and Cohen’s f. Verify that ω2 = f 2/(1 + f 2) and f 2 = ω2/(1 − ω2).
(d) Based on these results, if you were to replicate the study, how many subjects would you

run to have power = .8?
8.11 The Sayhlth file linked to the Seasons page on the website contains Sayhlth scores (self-

ratings of health) of 1–4 (excellent to fair; three subjects with poor ratings in the Seasons file
are not included). The four categories will be the independent variable in this exercise and the
Beck_D score will be the dependent variable in the following analyses. The Beck_D score is
an average of the four seasonal Beck Depression scores and is available only for those
subjects whose scores were recorded in all four seasons. The distribution of Beck_D scores
tends to be skewed and, as in most non-normal distributions, heterogeneity of variance is
often a problem.
(a) Explore the Beck_D (seasonal mean) data, using any statistics and plots you think are

relevant, and comment on the relative locations, shapes, and variabilities of the scores in
the four categories.

(b) Using the four Sayhlth categories, plot the spread vs level; as stated in Chapter 8, this is
the log of the H-spread plotted against the log of the median. Several statistical software
packages make this plot available. Find the best-fit regression line for this plot and
transform the Beck_D scores by raising them to the power, 1 – slope.

(c) Explore the distribution of the transformed scores at each Sayhlth category. Has the
transformation had any effect on the shape of the distributions or on their variances?
Test for homogeneity of variance.

(d) Next try a different transformation. Calculate log(Beck_D + 1) and discuss the effects of
this transformation.

(e) What might be the advantages of transforming data to a scale on which they are
normally distributed with homogeneous variances?

8.12 The Sayhlth file also categorizes individuals by employment category; 1 = employed full time;
2 = employed part-time; 3 = not employed.
(a) Explore the Beck_D data in each Employ category, looking at relevant graphs and

statistics. Comment on the validity of the ANOVA assumptions.
(b) In Exercise 8.11, we considered transformations of the Beck_D data, one of

which appeared to provide results more in accord with the ANOVA model. Use that
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transformation and again explore the data. Are the results more in accord with the
ANOVA model?

(c) Do ANOVAs on the Beck_D scores and the transformed scores as a function of
employment status. What do you conclude about the effects of employment?

(d) Does the Welch F test confirm or contradict your conclusion?
(e) Calculate Cohen’s f for both the original and the transformed data. How would you

characterize the effect sizes? In general, what can you say about the effect of employment
status on depression scores?

8.13 Continuing with the Sayhlth file,
(a) Using the four Sayhlth categories as your independent variable, do separate ANOVAs of

the Beck_D data for men and for women.
(b) Calculate Cohen’s f for each sex and compare the effect sizes.
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